Light-induced conversion of an insulating refractory oxide into a persistent electronic conductor

Materials that are good electrical conductors are not in general optically transparent, yet a combination of high conductivity and transparency is desirable for many emerging opto-electronic applications. To this end, various transparent oxides composed of transition or post-transition metals (such...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 419; no. 6906; pp. 462 - 465
Main Authors Hayashi, Katsuro, Matsuishi, Satoru, Kamiya, Toshio, Hirano, Masahiro, Hosono, Hideo
Format Journal Article
LanguageEnglish
Published London Nature Publishing 03.10.2002
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Materials that are good electrical conductors are not in general optically transparent, yet a combination of high conductivity and transparency is desirable for many emerging opto-electronic applications. To this end, various transparent oxides composed of transition or post-transition metals (such as indium tin oxide) are rendered electrically conducting by ion doping. But such an approach does not work for the abundant transparent oxides of the main-group metals. Here we demonstrate a process by which the transparent insulating oxide 12CaO·7Al2O3 (refs 7-13) can be converted into an electrical conductor. H- ions are incorporated into the subnanometre-sized cages of the oxide by a thermal treatment in a hydrogen atmosphere; subsequent irradiation of the material with ultraviolet light results in a conductive state that persists after irradiation ceases. The photo-activated material exhibits moderate electrical conductivity (∼0.3 S cm-1) at room temperature, with visible light absorption losses of only one per cent for 200-nm-thick films. We suggest that this concept can be applied to other main-group metal oxides, for the direct optical writing of conducting wires in insulating transparent media and the formation of a high-density optical memory.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0028-0836
1476-4687
DOI:10.1038/nature01053