rGREAT: an R/bioconductor package for functional enrichment on genomic regions
Abstract Summary GREAT (Genomic Regions Enrichment of Annotations Tool) is a widely used tool for functional enrichment on genomic regions. However, as an online tool, it has limitations of outdated annotation data, small numbers of supported organisms and gene set collections, and not being extensi...
Saved in:
Published in | Bioinformatics (Oxford, England) Vol. 39; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.01.2023
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract
Summary
GREAT (Genomic Regions Enrichment of Annotations Tool) is a widely used tool for functional enrichment on genomic regions. However, as an online tool, it has limitations of outdated annotation data, small numbers of supported organisms and gene set collections, and not being extensible for users. Here, we developed a new R/Bioconductorpackage named rGREAT which implements the GREAT algorithm locally. rGREAT by default supports more than 600 organisms and a large number of gene set collections, as well as self-provided gene sets and organisms from users. Additionally, it implements a general method for dealing with background regions.
Availability and implementation
The package rGREAT is freely available from the Bioconductor project: https://bioconductor.org/packages/rGREAT/. The development version is available at https://github.com/jokergoo/rGREAT. Gene Ontology gene sets for more than 600 organisms retrieved from Ensembl BioMart are presented in an R package BioMartGOGeneSets which is available at https://github.com/jokergoo/BioMartGOGeneSets.
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 content type line 14 ObjectType-Report-1 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1367-4811 1367-4803 1367-4811 |
DOI: | 10.1093/bioinformatics/btac745 |