A Molecular Basis for the Presentation of Phosphorylated Peptides by HLA-B Antigens

As aberrant protein phosphorylation is a hallmark of tumor cells, the display of tumor-specific phosphopeptides by Human Leukocyte Antigen (HLA) class I molecules can be exploited in the treatment of cancer by T-cell-based immunotherapy. Yet, the characterization and prediction of HLA-I phospholigan...

Full description

Saved in:
Bibliographic Details
Published inMolecular & cellular proteomics Vol. 16; no. 2; pp. 181 - 193
Main Authors Alpízar, Adán, Marino, Fabio, Ramos-Fernández, Antonio, Lombardía, Manuel, Jeko, Anita, Pazos, Florencio, Paradela, Alberto, Santiago, César, Heck, Albert J.R., Marcilla, Miguel
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2017
American Society for Biochemistry and Molecular Biology
The American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As aberrant protein phosphorylation is a hallmark of tumor cells, the display of tumor-specific phosphopeptides by Human Leukocyte Antigen (HLA) class I molecules can be exploited in the treatment of cancer by T-cell-based immunotherapy. Yet, the characterization and prediction of HLA-I phospholigands is challenging as the molecular determinants of the presentation of such post-translationally modified peptides are not fully understood. Here, we employed a peptidomic workflow to identify 256 unique phosphorylated ligands associated with HLA-B*40, -B*27, -B*39, or -B*07. Remarkably, these phosphopeptides showed similar molecular features. Besides the specific anchor motifs imposed by the binding groove of each allotype, the predominance of phosphorylation at peptide position 4 (P4) became strikingly evident, as was the enrichment of basic residues at P1. To determine the structural basis of this observation, we carried out a series of peptide binding assays and solved the crystal structures of HLA-B*40 in complex with a phosphorylated ligand or its nonphosphorylated counterpart. Overall, our data provide a clear explanation to the common motif found in the phosphopeptidomes associated to different HLA-B molecules. The high prevalence of phosphorylation at P4 is dictated by the presence of the conserved residue Arg62 in the heavy chain, a structural feature shared by most HLA-B alleles. In contrast, the preference for basic residues at P1 is allotype-dependent and might be linked to the structure of the A pocket. This molecular understanding of the presentation of phosphopeptides by HLA-B molecules provides a base for the improved prediction and identification of phosphorylated neo-antigens, as potentially used for cancer immunotherapy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:1535-9476
1535-9484
DOI:10.1074/mcp.M116.063800