Carbon-coated iron nanopowder as a sintering aid for water-atomized iron powder

Abstract The paper examines the influence of carbon coating on iron nanopowder used as a sintering aid for water-atomized iron powder. Iron nanopowder without such a coating was used as a reference sintering aid to isolate the influence of the carbon coating. Both nanopowder variants were characteri...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; p. 17850
Main Authors Manchili, Swathi K, Liu, F, Hryha, E, Nyborg, L
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group 25.10.2022
Nature Publishing Group UK
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract The paper examines the influence of carbon coating on iron nanopowder used as a sintering aid for water-atomized iron powder. Iron nanopowder without such a coating was used as a reference sintering aid to isolate the influence of the carbon coating. Both nanopowder variants were characterised using XPS and HRTEM. The results showed a core–shell structure for both variants. The iron nanopowder is covered by a 3–4 nm thick iron oxide layer, while the carbon-coated iron nanopowder is encapsulated with several nanometric carbon layers. Thermogravimetry conducted in a pure hydrogen environment shows a multipeak behaviour for the carbon-coated iron nanopowder, while a single peak behaviour is observed for the iron nanopowder. Two types of micro/nanobimodal powders were obtained by mixing the nanopowder with water-atomized iron powder. Improved linear shrinkage was observed during sintering when the carbon-coated iron nanopowder was added. This can be explained by the reduction in surface diffusion in the nanopowder caused by the carbon coating, which allows the nanopowder to sinter at higher temperatures and improves densification. Carbon and oxygen analysis, density measurements, optical microscopy and JMatPro calculations were also performed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-22336-4