sRNAdeep: a novel tool for bacterial sRNA prediction based on DistilBERT encoding mode and deep learning algorithms

Bacterial small regulatory RNA (sRNA) plays a crucial role in cell metabolism and could be used as a new potential drug target in the treatment of pathogen-induced disease. However, experimental methods for identifying sRNAs still require a large investment of human and material resources. In this s...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 25; no. 1; pp. 1021 - 14
Main Authors Qian, Weiye, Sun, Jiawei, Liu, Tianyi, Yang, Zhiyuan, Tsui, Stephen Kwok-Wing
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 31.10.2024
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Bacterial small regulatory RNA (sRNA) plays a crucial role in cell metabolism and could be used as a new potential drug target in the treatment of pathogen-induced disease. However, experimental methods for identifying sRNAs still require a large investment of human and material resources. In this study, we propose a novel sRNA prediction model called sRNAdeep based on the DistilBERT feature extraction and TextCNN methods. The sRNA and non-sRNA sequences of bacteria were considered as sentences and then fed into a composite model consisting of deep learning models to evaluate classification performance. By filtering sRNAs from BSRD database, we obtained a validation dataset comprised of 2438 positive and 4730 negative samples. The benchmark experiments showed that sRNAdeep displayed better performance in the various indexes compared to previous sRNA prediction tools. By applying our tool to Mycobacterium tuberculosis (MTB) genome, we have identified 21 sRNAs within the intergenic and intron regions. A set of 272 targeted genes regulated by these sRNAs were also captured in MTB. The coding proteins of two genes (lysX and icd1) are implicated in drug response, with significant active sites related to drug resistance mechanisms of MTB. In conclusion, our newly developed sRNAdeep can help researchers identify bacterial sRNAs more precisely and can be freely available from https://github.com/pyajagod/sRNAdeep.git .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1471-2164
1471-2164
DOI:10.1186/s12864-024-10951-6