Enhancement of Storage Stability and Masking Effect of Curcumin by Turmeric Extract-Loaded Nanoemulsion and Water-Soluble Chitosan Coating
This study focused on improving curcumin stability in various pHs and NaCl concentrations and reducing the strong scent of turmeric by the nanoemulsions system and further coating with water-soluble chitosan (WSC). Turmeric extract-loaded nanoemulsions (TE-NEs) were firstly prepared by mixing an oil...
Saved in:
Published in | Pharmaceutics Vol. 14; no. 8; p. 1547 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
25.07.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This study focused on improving curcumin stability in various pHs and NaCl concentrations and reducing the strong scent of turmeric by the nanoemulsions system and further coating with water-soluble chitosan (WSC). Turmeric extract-loaded nanoemulsions (TE-NEs) were firstly prepared by mixing an oil phase containing turmeric extract, MCT oil, and lecithin, and an aqueous phase containing tween 80 using an ultrasonication method. TE-NEs were further coated with WSC in the ratio of TE-NEs and WSC (1:1 to 1:10). The optimum WSC-TE-NEs exhibited an average particle size of 182 nm, a PDI of 0.317, and a zeta potential of +30.42 mV when WSC-TE-NEs were prepared in the ratio of 1:1. The stability of the WSC-TE-NEs was also assessed by determining the remained curcumin content. The remained curcumin contents of the TE-NEs and the WSC-TE-NEs were higher than that of the turmeric extract (TE) at pH 2~7 and NaCl concentrations of 100~400 mM. Fourier transform infrared (FT-IR) spectra, transmission electron microscope (TEM), and confocal laser scanning microscope (CLSM) images confirmed that the TE-NEs were successfully encapsulated with a WSC coating. As a result of GC analysis, the content of aromatic-turmerone was significantly decreased in the TE-NEs and the WSC-TE-NEs compared to the pristine TE, but there was no significant difference between the TE-NEs and the WSC-TE-NEs. These results suggest that water-soluble chitosan-coated nanoemulsions may be suitable for improving the chemical stability and masking effect of curcumin to facilitate its application in food. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 1999-4923 1999-4923 |
DOI: | 10.3390/pharmaceutics14081547 |