ATO Increases ROS Production and Apoptosis of Cells by Enhancing Calpain-Mediated Degradation of the Cancer Survival Protein TG2

Transglutaminase 2 (TG2) is a critical cancer cell survival factor that activates several signalling pathways to foster drug resistance, cancer stem cell survival, metastasis, inflammation, epithelial-mesenchymal transition, and angiogenesis. All-trans retinoic acid (ATRA) and chemotherapy have been...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 24; no. 13; p. 10938
Main Authors Jambrovics, Károly, Póliska, Szilárd, Scholtz, Beáta, Uray, Iván P, Balajthy, Zoltán
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 30.06.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Transglutaminase 2 (TG2) is a critical cancer cell survival factor that activates several signalling pathways to foster drug resistance, cancer stem cell survival, metastasis, inflammation, epithelial-mesenchymal transition, and angiogenesis. All-trans retinoic acid (ATRA) and chemotherapy have been the standard treatments for acute promyelocytic leukaemia (APL), but clinical studies have shown that arsenic trioxide (ATO), alone or in combination with ATRA, can improve outcomes. ATO exerts cytotoxic effects in a variety of ways by inducing oxidative stress, genotoxicity, altered signal transduction, and/or epigenetic modification. In the present study, we showed that ATO increased ROS production and apoptosis ratios in ATRA-differentiated NB4 leukaemia cells, and that these responses were enhanced when TG2 was deleted. The combined ATRA + ATO treatment also increased the amount of nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor, an adaptive regulator of the cellular oxidative stress response, and calpain proteolytic activity, resulting in TG2 degradation and the reduced survival of WT leukaemia cells. We further showed that the induced TG2 protein expression was degraded in the MCF-7 epithelial cell line and primary peripheral blood mononuclear cells upon ATO treatment, thereby sensitising these cell types to apoptotic signals.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms241310938