Prospective modeling and estimating the epidemiologically informative match rate within large foodborne pathogen genomic databases

Much has been written about the utility of genomic databases to public health. Within food safety these databases contain data from two types of isolates-those from patients (i.e., clinical) and those from non-clinical sources (e.g., a food manufacturing environment). A genetic match between isolate...

Full description

Saved in:
Bibliographic Details
Published inBMC research notes Vol. 17; no. 1; pp. 191 - 6
Main Authors Yin, Lanlan, Pettengill, James B.
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 09.07.2024
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Much has been written about the utility of genomic databases to public health. Within food safety these databases contain data from two types of isolates-those from patients (i.e., clinical) and those from non-clinical sources (e.g., a food manufacturing environment). A genetic match between isolates from these sources represents a signal of interest. We investigate the match rate within three large genomic databases (Listeria monocytogenes, Escherichia coli, and Salmonella) and the smaller Cronobacter database; the databases are part of the Pathogen Detection project at NCBI (National Center for Biotechnology Information). Currently, the match rate of clinical isolates to non-clinical isolates is 33% for L. monocytogenes, 46% for Salmonella, and 7% for E. coli. These match rates are associated with several database features including the diversity of the organism, the database size, and the proportion of non-clinical BioSamples. Modeling match rate via logistic regression showed relatively good performance. Our prediction model illustrates the importance of populating databases with non-clinical isolates to better identify a match for clinical samples. Such information should help public health officials prioritize surveillance strategies and show the critical need to populate fledgling databases (e.g., Cronobacter sakazakii).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1756-0500
1756-0500
DOI:10.1186/s13104-024-06847-z