Synthesis of Amino Acids Bearing Halodifluoromethyl Moieties and Their Application to p53-Derived Peptides Binding to Mdm2/Mdm4

Therapeutic peptides are a significant class of drugs in the treatment of a wide range of diseases. To enhance their properties, such as stability or binding affinity, they are usually chemically modified. This includes, among other techniques, cyclization of the peptide chain by bridging, modificat...

Full description

Saved in:
Bibliographic Details
Published inDrug design, development and therapy Vol. 17; pp. 1247 - 1274
Main Authors Vaas, Sebastian, Zimmermann, Markus O, Klett, Theresa, Boeckler, Frank M
Format Journal Article
LanguageEnglish
Published New Zealand Dove Medical Press Limited 01.01.2023
Dove
Dove Medical Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Therapeutic peptides are a significant class of drugs in the treatment of a wide range of diseases. To enhance their properties, such as stability or binding affinity, they are usually chemically modified. This includes, among other techniques, cyclization of the peptide chain by bridging, modifications to the backbone, and incorporation of unnatural amino acids. One approach previously established, is the use of halogenated aromatic amino acids. In principle, they are thereby enabled to form halogen bonds (XB). In this study, we focus on the -R-CF X moiety (R = O, NHCO; X = Cl, Br) as an uncommon halogen bond donor. These groups enable more spatial variability in protein-protein interactions. The chosen approach via Fmoc-protected building blocks allows for the incorporation of these modified amino acids in peptides using solid-phase peptide synthesis. Using a competitive fluorescence polarization assay to monitor binding to Mdm4, we demonstrate that a p53-derived peptide with Lys24Nle(εNHCOCF X) exhibits an improved inhibition constant K compared to the unmodified peptide. Decreasing K values observed with the increasing XB capacity of the halogen atoms (F ≪ Cl < Br) indicates the formation of a halogen bond. By reducing the side chain length of Nle(εNHCOCF X) to Abu(γNHCOCF X) as control experiments and through quantum mechanical calculations, we suggest that the observed affinity enhancement is related to halogen bond-induced intramolecular stabilization of the α-helical binding mode of the peptide or a direct interaction with His54 in human Mdm4.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1177-8881
1177-8881
DOI:10.2147/DDDT.S406703