Tick salivary gland components dampen Kasokero virus infection and shedding in its vertebrate reservoir, the Egyptian rousette bat (Rousettus aegyptiacus)

The human-pathogenic Kasokero virus (KASV) circulates in an enzootic transmission cycle between Egyptian rousette bats (ERBs; Rousettus aegyptiacus) and their argasid tick ectoparasites, Ornithodoros (Reticulinasus) faini. Although tick salivary gland components have been shown to potentiate virus i...

Full description

Saved in:
Bibliographic Details
Published inParasites & vectors Vol. 16; no. 1; p. 249
Main Authors Schuh, Amy J, Amman, Brian R, Guito, Jonathan C, Graziano, James C, Sealy, Tara K, Towner, Jonathan S
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 24.07.2023
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The human-pathogenic Kasokero virus (KASV) circulates in an enzootic transmission cycle between Egyptian rousette bats (ERBs; Rousettus aegyptiacus) and their argasid tick ectoparasites, Ornithodoros (Reticulinasus) faini. Although tick salivary gland components have been shown to potentiate virus infection in vertebrate non-reservoirs (i.e. incidental hosts or small animal models of disease), there is a lack of information on the effect of tick salivary gland components on viral infection and shedding in vertebrate reservoirs. To determine the impact of tick salivary gland components on KASV infection and shedding in ERBs, KASV loads were quantified in blood, oral swab, rectal swab, and urine specimens collected daily through 18 days post inoculation from groups of ERBs intradermally inoculated with KASV or KASV + O. (R.) faini tick salivary gland extract (SGE). Bats inoculated with KASV + tick SGE had significantly lower peak and cumulative KASV viremias and rectal shedding loads compared to bats inoculated with KASV only. We report for the first time to our knowledge that tick salivary gland components dampen arbovirus infection and shedding in a vertebrate reservoir. This study advances our understanding of biological factors underlying arbovirus maintenance in nature.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1756-3305
1756-3305
DOI:10.1186/s13071-023-05853-7