Genome-wide identification of grape ANS gene family and expression analysis at different fruit coloration stages
Anthocyanin synthase (ANS) is the enzyme downstream of the anthocyanins synthesis pathway and the rate-limiting enzyme of the synthesis pathway. It catalyzes the conversion of colorless anthocyanins to anthocyanins and plays an important role in plant color presentation and stress resistance. Howeve...
Saved in:
Published in | BMC plant biology Vol. 23; no. 1; p. 632 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
09.12.2023
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Anthocyanin synthase (ANS) is the enzyme downstream of the anthocyanins synthesis pathway and the rate-limiting enzyme of the synthesis pathway. It catalyzes the conversion of colorless anthocyanins to anthocyanins and plays an important role in plant color presentation and stress resistance. However, ANS gene is rarely studied in grapes.
In this study, 121 VvANS genes were identified and distributed on 18 chromosomes, VvANS family members were divided into 8 subgroups. Secondary structure prediction showed mainly irregular coils and α-helices, and subcellular localization indicated that VvANS gene family is mainly located in chloroplast, cytoplasm and nucleus. The promoter region of the VvANS gene family contains multiple cis-acting elements that are associated with light, abiotic stress, and hormones. Intraspecific collinearity analysis showed that there were 13 pairs of collinearity between VvANS genes. Interspecific collinearity analysis showed that there was more collinearity between grape, apple and Arabidopsis, but less collinearity between grape and rice. Microarray data analysis showed that VvANS17, VvANS23 and VvANS75 had higher expression levels in flesh and peel, while VvANS25, VvANS64 and VvANS106 had higher expression levels in flower. The results of qRT-PCR analysis showed that VvANS genes were expressed throughout the whole process of fruit coloring, such as VvANS47 and VvANS55 in the green fruit stage, VvANS3, VvANS64 and VvANS90 in the initial fruit color turning stage. The expression levels of VvANS21, VvANS79 and VvANS108 were higher at 50% coloring stage, indicating that these genes play an important role in the fruit coloring process. VvANS4, VvANS66 and VvANS113 had the highest expression levels in the full maturity stage.
These results indicated that different members of VvANS gene family played a role in different coloring stages, and this study laid a foundation for further research on the function of ANS gene family. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1471-2229 1471-2229 |
DOI: | 10.1186/s12870-023-04648-3 |