A Sequence Homology and Bioinformatic Approach Can Predict Candidate Targets for Immune Responses to SARS-CoV-2

Effective countermeasures against the recent emergence and rapid expansion of the 2019 novel coronavirus (SARS-CoV-2) require the development of data and tools to understand and monitor its spread and immune responses to it. However, little information is available about the targets of immune respon...

Full description

Saved in:
Bibliographic Details
Published inCell host & microbe Vol. 27; no. 4; pp. 671 - 680.e2
Main Authors Grifoni, Alba, Sidney, John, Zhang, Yun, Scheuermann, Richard H., Peters, Bjoern, Sette, Alessandro
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 08.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Effective countermeasures against the recent emergence and rapid expansion of the 2019 novel coronavirus (SARS-CoV-2) require the development of data and tools to understand and monitor its spread and immune responses to it. However, little information is available about the targets of immune responses to SARS-CoV-2. We used the Immune Epitope Database and Analysis Resource (IEDB) to catalog available data related to other coronaviruses. This includes SARS-CoV, which has high sequence similarity to SARS-CoV-2 and is the best-characterized coronavirus in terms of epitope responses. We identified multiple specific regions in SARS-CoV-2 that have high homology to the SARS-CoV virus. Parallel bioinformatic predictions identified a priori potential B and T cell epitopes for SARS-CoV-2. The independent identification of the same regions using two approaches reflects the high probability that these regions are promising targets for immune recognition of SARS-CoV-2. These predictions can facilitate effective vaccine design against this virus of high priority. [Display omitted] •Ten experimentally defined regions within SARS-CoV have high homology with SARS-CoV-2•Parallel bioinformatics predicted potential B and T cell epitopes for SARS-CoV-2•Independent approaches identified the same immunodominant regions•The conserved immune regions have implications for vaccine design against multiple CoVs Grifoni et al. identify potential targets for immune responses to the 2019 novel coronavirus (SARS-CoV-2) by sequence homology with closely related SARS-CoV and by a priori epitope prediction using bioinformatics approaches. This analysis provides essential information for understanding human immune responses to this virus and for evaluating diagnostic and vaccine candidates.
AbstractList Effective countermeasures against the recent emergence and rapid expansion of the 2019 novel coronavirus (SARS-CoV-2) require the development of data and tools to understand and monitor its spread and immune responses to it. However, little information is available about the targets of immune responses to SARS-CoV-2. We used the Immune Epitope Database and Analysis Resource (IEDB) to catalog available data related to other coronaviruses. This includes SARS-CoV, which has high sequence similarity to SARS-CoV-2 and is the best-characterized coronavirus in terms of epitope responses. We identified multiple specific regions in SARS-CoV-2 that have high homology to the SARS-CoV virus. Parallel bioinformatic predictions identified a priori potential B and T cell epitopes for SARS-CoV-2. The independent identification of the same regions using two approaches reflects the high probability that these regions are promising targets for immune recognition of SARS-CoV-2. These predictions can facilitate effective vaccine design against this virus of high priority.Effective countermeasures against the recent emergence and rapid expansion of the 2019 novel coronavirus (SARS-CoV-2) require the development of data and tools to understand and monitor its spread and immune responses to it. However, little information is available about the targets of immune responses to SARS-CoV-2. We used the Immune Epitope Database and Analysis Resource (IEDB) to catalog available data related to other coronaviruses. This includes SARS-CoV, which has high sequence similarity to SARS-CoV-2 and is the best-characterized coronavirus in terms of epitope responses. We identified multiple specific regions in SARS-CoV-2 that have high homology to the SARS-CoV virus. Parallel bioinformatic predictions identified a priori potential B and T cell epitopes for SARS-CoV-2. The independent identification of the same regions using two approaches reflects the high probability that these regions are promising targets for immune recognition of SARS-CoV-2. These predictions can facilitate effective vaccine design against this virus of high priority.
Effective countermeasures against the recent emergence and rapid expansion of the 2019 novel coronavirus (SARS-CoV-2) require the development of data and tools to understand and monitor its spread and immune responses to it. However, little information is available about the targets of immune responses to SARS-CoV-2. We used the Immune Epitope Database and Analysis Resource (IEDB) to catalog available data related to other coronaviruses. This includes SARS-CoV, which has high sequence similarity to SARS-CoV-2 and is the best-characterized coronavirus in terms of epitope responses. We identified multiple specific regions in SARS-CoV-2 that have high homology to the SARS-CoV virus. Parallel bioinformatic predictions identified a priori potential B and T cell epitopes for SARS-CoV-2. The independent identification of the same regions using two approaches reflects the high probability that these regions are promising targets for immune recognition of SARS-CoV-2. These predictions can facilitate effective vaccine design against this virus of high priority. • Ten experimentally defined regions within SARS-CoV have high homology with SARS-CoV-2 • Parallel bioinformatics predicted potential B and T cell epitopes for SARS-CoV-2 • Independent approaches identified the same immunodominant regions • The conserved immune regions have implications for vaccine design against multiple CoVs Grifoni et al. identify potential targets for immune responses to the 2019 novel coronavirus (SARS-CoV-2) by sequence homology with closely related SARS-CoV and by a priori epitope prediction using bioinformatics approaches. This analysis provides essential information for understanding human immune responses to this virus and for evaluating diagnostic and vaccine candidates.
Effective countermeasures against the recent emergence and rapid expansion of the 2019 novel coronavirus (SARS-CoV-2) require the development of data and tools to understand and monitor its spread and immune responses to it. However, little information is available about the targets of immune responses to SARS-CoV-2. We used the Immune Epitope Database and Analysis Resource (IEDB) to catalog available data related to other coronaviruses. This includes SARS-CoV, which has high sequence similarity to SARS-CoV-2 and is the best-characterized coronavirus in terms of epitope responses. We identified multiple specific regions in SARS-CoV-2 that have high homology to the SARS-CoV virus. Parallel bioinformatic predictions identified a priori potential B and T cell epitopes for SARS-CoV-2. The independent identification of the same regions using two approaches reflects the high probability that these regions are promising targets for immune recognition of SARS-CoV-2. These predictions can facilitate effective vaccine design against this virus of high priority. [Display omitted] •Ten experimentally defined regions within SARS-CoV have high homology with SARS-CoV-2•Parallel bioinformatics predicted potential B and T cell epitopes for SARS-CoV-2•Independent approaches identified the same immunodominant regions•The conserved immune regions have implications for vaccine design against multiple CoVs Grifoni et al. identify potential targets for immune responses to the 2019 novel coronavirus (SARS-CoV-2) by sequence homology with closely related SARS-CoV and by a priori epitope prediction using bioinformatics approaches. This analysis provides essential information for understanding human immune responses to this virus and for evaluating diagnostic and vaccine candidates.
Effective countermeasures against the recent emergence and rapid expansion of the 2019 novel coronavirus (SARS-CoV-2) require the development of data and tools to understand and monitor its spread and immune responses to it. However, little information is available about the targets of immune responses to SARS-CoV-2. We used the Immune Epitope Database and Analysis Resource (IEDB) to catalog available data related to other coronaviruses. This includes SARS-CoV, which has high sequence similarity to SARS-CoV-2 and is the best-characterized coronavirus in terms of epitope responses. We identified multiple specific regions in SARS-CoV-2 that have high homology to the SARS-CoV virus. Parallel bioinformatic predictions identified a priori potential B and T cell epitopes for SARS-CoV-2. The independent identification of the same regions using two approaches reflects the high probability that these regions are promising targets for immune recognition of SARS-CoV-2. These predictions can facilitate effective vaccine design against this virus of high priority.
Author Sidney, John
Sette, Alessandro
Scheuermann, Richard H.
Grifoni, Alba
Peters, Bjoern
Zhang, Yun
AuthorAffiliation 2 J. Craig Venter Institute, La Jolla, CA 92037, USA
4 Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
1 Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
3 Department of Pathology, University of California, San Diego, San Diego, CA 92093, USA
AuthorAffiliation_xml – name: 3 Department of Pathology, University of California, San Diego, San Diego, CA 92093, USA
– name: 1 Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
– name: 4 Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
– name: 2 J. Craig Venter Institute, La Jolla, CA 92037, USA
Author_xml – sequence: 1
  givenname: Alba
  surname: Grifoni
  fullname: Grifoni, Alba
  organization: Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
– sequence: 2
  givenname: John
  surname: Sidney
  fullname: Sidney, John
  organization: Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
– sequence: 3
  givenname: Yun
  surname: Zhang
  fullname: Zhang, Yun
  organization: J. Craig Venter Institute, La Jolla, CA 92037, USA
– sequence: 4
  givenname: Richard H.
  surname: Scheuermann
  fullname: Scheuermann, Richard H.
  organization: Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
– sequence: 5
  givenname: Bjoern
  surname: Peters
  fullname: Peters, Bjoern
  organization: Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
– sequence: 6
  givenname: Alessandro
  surname: Sette
  fullname: Sette, Alessandro
  email: alex@lji.org
  organization: Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32183941$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rFDEYhYNU7If-AS8kl97MmI_5CoiwLmoLBaVbvQ2Z5J3dLDPJmGQL_fdm3FbUi17lhZznHDjnHJ047wCh15SUlNDm3b7UOz-VjDBSEl4Swp6hMyp4VTSkESe_b1pwyrpTdB7jnpC6Ji19gU45ox0XFT1DfoU38PMATgO-9JMf_fYeK2fwR-utG3yYVLIar-Y5eKV3eK0c_hbAWJ2W21ijEuBbFbaQIs56fDVNBwf4BuLsXYSIk8eb1c2mWPsfBXuJng9qjPDq4b1A3z9_ul1fFtdfv1ytV9eFriuRClr1ptZ66AnVlBJNVEWhHwYlun4AqAYwteG0E1079EIp0rVU9KxhRqhM9PwCfTj6zod-AqPBpaBGOQc7qXAvvbLy3x9nd3Lr72RLK9YIng3ePhgEn_uJSU42ahhH5cAfomS87QQhFamz9M3fWX9CHlvOgu4o0MHHGGCQ2qbcq1-i7Sgpkcugci-XQeUyqCRc5kEzyv5DH92fhN4fIcgN31kIMmq7TGxsAJ2k8fYp_Bcj4LtQ
CitedBy_id crossref_primary_10_1155_2022_2102937
crossref_primary_10_1016_j_cell_2022_01_027
crossref_primary_10_1016_j_jcyt_2020_08_009
crossref_primary_10_1186_s12916_022_02252_0
crossref_primary_10_3389_fgene_2022_1028081
crossref_primary_10_1080_19390211_2020_1834049
crossref_primary_10_3389_fimmu_2022_812393
crossref_primary_10_1016_j_celrep_2023_112827
crossref_primary_10_1080_07391102_2022_2146752
crossref_primary_10_1002_jemt_23551
crossref_primary_10_1038_s41587_021_01131_y
crossref_primary_10_1093_bib_bbab496
crossref_primary_10_1051_medsci_2020168
crossref_primary_10_1128_Spectrum_00458_21
crossref_primary_10_1016_j_compbiomed_2020_104054
crossref_primary_10_3389_fmicb_2022_842232
crossref_primary_10_3390_molecules25184086
crossref_primary_10_3390_biology10080789
crossref_primary_10_1038_s42003_021_02885_6
crossref_primary_10_3390_vaccines8020183
crossref_primary_10_1021_acsinfecdis_2c00204
crossref_primary_10_1007_s12192_021_01244_y
crossref_primary_10_1080_08916934_2023_2259133
crossref_primary_10_3389_fimmu_2022_974364
crossref_primary_10_1128_mSphere_00224_21
crossref_primary_10_1002_jmv_28190
crossref_primary_10_1016_j_ijid_2021_02_090
crossref_primary_10_3389_fmed_2021_687220
crossref_primary_10_1016_j_rinp_2021_104483
crossref_primary_10_3389_fimmu_2022_884433
crossref_primary_10_1038_s41423_020_00523_5
crossref_primary_10_1080_08830185_2020_1800688
crossref_primary_10_1016_j_meegid_2021_104973
crossref_primary_10_1007_s00253_022_12230_4
crossref_primary_10_1016_j_nmni_2020_100817
crossref_primary_10_1080_07391102_2022_2075468
crossref_primary_10_1016_j_isci_2021_102298
crossref_primary_10_1016_j_meegid_2020_104351
crossref_primary_10_1038_s41598_021_85202_9
crossref_primary_10_3389_fmicb_2023_1264612
crossref_primary_10_1152_ajpcell_00260_2020
crossref_primary_10_1038_s41565_020_0737_y
crossref_primary_10_1074_mcp_RA120_002314
crossref_primary_10_1021_acsabm_1c01238
crossref_primary_10_1080_21645515_2020_1808410
crossref_primary_10_1016_j_ebiom_2020_103132
crossref_primary_10_3389_fimmu_2022_914167
crossref_primary_10_1016_j_xcrm_2023_101088
crossref_primary_10_1172_JCI140965
crossref_primary_10_1111_trf_16819
crossref_primary_10_3390_ijms22052630
crossref_primary_10_1016_j_ijbiomac_2022_06_021
crossref_primary_10_3389_fimmu_2021_727989
crossref_primary_10_1016_j_jviromet_2024_114995
crossref_primary_10_1021_acsinfecdis_0c00274
crossref_primary_10_4103_jomfp_JOMFP_334_20
crossref_primary_10_1016_j_nexres_2025_100215
crossref_primary_10_1186_s40779_021_00342_3
crossref_primary_10_3390_pathogens9050324
crossref_primary_10_1016_j_compbiomed_2020_104158
crossref_primary_10_1021_acs_jproteome_0c00273
crossref_primary_10_3389_fimmu_2021_636768
crossref_primary_10_1038_s41598_020_73371_y
crossref_primary_10_3389_fimmu_2020_579480
crossref_primary_10_1016_j_addr_2021_01_007
crossref_primary_10_1016_j_mehy_2020_110049
crossref_primary_10_1016_j_virusres_2020_198082
crossref_primary_10_4049_jimmunol_2000922
crossref_primary_10_1016_j_immuno_2022_100020
crossref_primary_10_1084_jem_20202617
crossref_primary_10_1002_advs_202404159
crossref_primary_10_1038_s41467_021_22297_8
crossref_primary_10_1016_j_chom_2022_02_003
crossref_primary_10_3390_covid1030047
crossref_primary_10_1016_j_micinf_2020_10_004
crossref_primary_10_7717_peerj_13380
crossref_primary_10_1016_j_imu_2021_100578
crossref_primary_10_1021_acsnano_0c08494
crossref_primary_10_1073_pnas_2111815118
crossref_primary_10_3389_fmicb_2023_1295678
crossref_primary_10_1016_j_compbiomed_2021_104325
crossref_primary_10_1128_spectrum_00324_23
crossref_primary_10_3390_v14081837
crossref_primary_10_1016_j_intimp_2021_107568
crossref_primary_10_1128_jcm_00140_22
crossref_primary_10_1016_j_csbj_2021_06_041
crossref_primary_10_1038_s41431_022_01108_8
crossref_primary_10_1016_j_virol_2022_08_010
crossref_primary_10_1093_bioinformatics_btab406
crossref_primary_10_1016_j_gendis_2021_05_006
crossref_primary_10_3390_v14081707
crossref_primary_10_1007_s00044_020_02610_8
crossref_primary_10_1016_j_celrep_2021_109179
crossref_primary_10_1021_acsinfecdis_4c00544
crossref_primary_10_1007_s00251_022_01284_3
crossref_primary_10_3389_fimmu_2021_728936
crossref_primary_10_3389_fcimb_2020_00340
crossref_primary_10_1016_j_asoc_2021_108280
crossref_primary_10_1016_j_meegid_2020_104382
crossref_primary_10_1016_j_vaccine_2024_05_040
crossref_primary_10_3389_fimmu_2021_641900
crossref_primary_10_1093_bib_bbaa359
crossref_primary_10_1126_science_abg8985
crossref_primary_10_3390_v13050796
crossref_primary_10_1016_j_celrep_2021_110167
crossref_primary_10_1590_1678_4685_gmb_2021_0036
crossref_primary_10_35366_99463
crossref_primary_10_3390_vaccines10040581
crossref_primary_10_1128_msystems_00310_21
crossref_primary_10_1111_bcpt_13600
crossref_primary_10_1073_pnas_2012358117
crossref_primary_10_1016_j_humimm_2020_08_001
crossref_primary_10_1128_mSphere_00203_21
crossref_primary_10_1016_j_arcmed_2022_10_007
crossref_primary_10_1016_j_jsps_2020_11_014
crossref_primary_10_1186_s12929_021_00740_8
crossref_primary_10_3389_fphys_2022_867444
crossref_primary_10_1089_vim_2021_0121
crossref_primary_10_15406_ghoa_2021_12_00461
crossref_primary_10_1126_scitranslmed_abd5487
crossref_primary_10_1109_TCBB_2023_3311444
crossref_primary_10_3390_v13050787
crossref_primary_10_1016_j_tim_2020_05_012
crossref_primary_10_1016_j_isci_2021_102096
crossref_primary_10_1016_j_xcrm_2020_100036
crossref_primary_10_3390_su142416761
crossref_primary_10_1186_s12863_022_01040_2
crossref_primary_10_1016_j_biopha_2020_110914
crossref_primary_10_1016_j_colcom_2021_100533
crossref_primary_10_1016_j_meegid_2020_104489
crossref_primary_10_4103_RPS_RPS_82_24
crossref_primary_10_3389_fimmu_2020_01870
crossref_primary_10_2144_fsoa_2022_0048
crossref_primary_10_1016_j_arcmed_2021_01_004
crossref_primary_10_2174_0122113525255835240107162255
crossref_primary_10_3390_jfb15030058
crossref_primary_10_1002_iid3_358
crossref_primary_10_1016_j_mehy_2020_110082
crossref_primary_10_33590_emjallergyimmunol_21_00088
crossref_primary_10_1007_s15010_023_02142_4
crossref_primary_10_1016_j_crimmu_2022_06_001
crossref_primary_10_1002_cbic_202300103
crossref_primary_10_1128_Spectrum_01416_21
crossref_primary_10_1152_physiolgenomics_00033_2020
crossref_primary_10_1186_s40249_020_00713_3
crossref_primary_10_1016_j_cels_2020_11_005
crossref_primary_10_1016_j_talanta_2021_122691
crossref_primary_10_3389_fimmu_2020_565278
crossref_primary_10_3390_ijms24129873
crossref_primary_10_3390_vaccines10111917
crossref_primary_10_3390_ijms21124546
crossref_primary_10_1038_s41541_021_00321_8
crossref_primary_10_3389_fmolb_2022_761173
crossref_primary_10_1016_j_bios_2021_112969
crossref_primary_10_3389_fimmu_2022_930252
crossref_primary_10_1093_bib_bbab456
crossref_primary_10_1093_database_baab059
crossref_primary_10_1016_j_ijid_2023_09_001
crossref_primary_10_3390_healthcare8020181
crossref_primary_10_1016_j_bmc_2021_116040
crossref_primary_10_1038_s41392_020_00352_y
crossref_primary_10_1016_j_xcrm_2021_100312
crossref_primary_10_1016_j_cell_2021_01_050
crossref_primary_10_1016_j_heliyon_2024_e35325
crossref_primary_10_1016_j_vaccine_2023_09_022
crossref_primary_10_3389_fimmu_2020_601886
crossref_primary_10_1093_cid_ciac057
crossref_primary_10_1039_D1AN01458G
crossref_primary_10_1039_D1BM01060C
crossref_primary_10_1186_s13578_022_00822_6
crossref_primary_10_1371_journal_pone_0279428
crossref_primary_10_1016_j_cca_2023_117390
crossref_primary_10_1007_s00044_021_02826_2
crossref_primary_10_1002_jmv_27017
crossref_primary_10_3389_fimmu_2020_01581
crossref_primary_10_1002_jmv_28225
crossref_primary_10_1038_s41598_021_88696_5
crossref_primary_10_36290_neu_2020_121
crossref_primary_10_1007_s00109_020_01961_4
crossref_primary_10_1093_femspd_ftac001
crossref_primary_10_4110_in_2021_21_e4
crossref_primary_10_1126_science_abe1107
crossref_primary_10_1016_j_matt_2020_09_027
crossref_primary_10_4236_health_2021_133023
crossref_primary_10_1002_advs_202103248
crossref_primary_10_1038_s41467_020_18450_4
crossref_primary_10_1080_21655979_2022_2076390
crossref_primary_10_3389_fgene_2021_586569
crossref_primary_10_1039_D0CC08265A
crossref_primary_10_1186_s12964_024_01818_0
crossref_primary_10_1002_adhm_202102089
crossref_primary_10_1016_j_celrep_2020_108454
crossref_primary_10_3389_fimmu_2020_01441
crossref_primary_10_1016_j_nmni_2020_100786
crossref_primary_10_1038_s41598_021_88310_8
crossref_primary_10_1002_cti2_1410
crossref_primary_10_1016_j_immuni_2020_11_015
crossref_primary_10_1080_07391102_2020_1839563
crossref_primary_10_1007_s00216_022_03918_7
crossref_primary_10_3389_fimmu_2021_635942
crossref_primary_10_1016_j_jviromet_2022_114463
crossref_primary_10_1038_s41598_024_52250_w
crossref_primary_10_3390_v13050749
crossref_primary_10_1002_acg2_101
crossref_primary_10_1007_s00705_021_04961_y
crossref_primary_10_3389_fimmu_2023_1131985
crossref_primary_10_1186_s43141_022_00344_1
crossref_primary_10_1080_17476348_2020_1782197
crossref_primary_10_3233_JIFS_221883
crossref_primary_10_1016_j_jbi_2021_103920
crossref_primary_10_1016_j_imbio_2022_152287
crossref_primary_10_3389_fped_2020_595539
crossref_primary_10_3390_pharmaceutics15051562
crossref_primary_10_1093_bib_bbaa340
crossref_primary_10_19163_1994_9480_2021_2_78__18_27
crossref_primary_10_1016_j_celrep_2020_108666
crossref_primary_10_1111_mec_15730
crossref_primary_10_3389_fimmu_2022_1080897
crossref_primary_10_1016_j_prevetmed_2024_106303
crossref_primary_10_1021_acs_analchem_3c01522
crossref_primary_10_1371_journal_pgph_0001566
crossref_primary_10_3390_molecules26133882
crossref_primary_10_1016_j_immuni_2020_11_004
crossref_primary_10_1093_bioinformatics_btab467
crossref_primary_10_3389_fimmu_2022_879946
crossref_primary_10_1007_s10989_020_10140_5
crossref_primary_10_2196_19371
crossref_primary_10_3389_fimmu_2022_931372
crossref_primary_10_3389_fimmu_2021_772511
crossref_primary_10_1016_j_nano_2022_102527
crossref_primary_10_3389_fmedt_2020_553478
crossref_primary_10_1186_s13073_020_00767_w
crossref_primary_10_1002_advs_202207474
crossref_primary_10_1016_j_intimp_2021_108491
crossref_primary_10_1038_s41591_020_01143_2
crossref_primary_10_1093_pcmedi_pbaa017
crossref_primary_10_1002_eji_202049101
crossref_primary_10_1007_s13337_020_00632_9
crossref_primary_10_1080_07391102_2023_2273438
crossref_primary_10_1371_journal_pone_0307873
crossref_primary_10_1038_s41467_023_43189_z
crossref_primary_10_1038_s42003_023_04730_4
crossref_primary_10_3390_nu12113512
crossref_primary_10_1371_journal_pbio_3001265
crossref_primary_10_1007_s13346_021_00945_2
crossref_primary_10_1186_s12967_020_02675_4
crossref_primary_10_1016_j_isci_2021_102311
crossref_primary_10_1146_annurev_immunol_101721_061120
crossref_primary_10_3389_fimmu_2023_1160065
crossref_primary_10_1016_j_jviromet_2021_114146
crossref_primary_10_1371_journal_pone_0258645
crossref_primary_10_3389_fmicb_2022_845316
crossref_primary_10_1038_s41467_021_22905_7
crossref_primary_10_1039_D0RA04395H
crossref_primary_10_3390_life13020402
crossref_primary_10_1172_JCI142081
crossref_primary_10_1007_s00284_022_03003_3
crossref_primary_10_3389_fcell_2020_00476
crossref_primary_10_4274_jtgga_galenos_2023_2023_3_12
crossref_primary_10_1002_jmv_27285
crossref_primary_10_3389_fphar_2020_01278
crossref_primary_10_1038_s41467_024_45043_2
crossref_primary_10_1111_tan_14387
crossref_primary_10_3390_diagnostics12020381
crossref_primary_10_3390_s20226591
crossref_primary_10_1002_1873_3468_13845
crossref_primary_10_1093_glycob_cwab044
crossref_primary_10_1038_s41467_020_16638_2
crossref_primary_10_1172_JCI145476
crossref_primary_10_1038_s41392_021_00610_7
crossref_primary_10_1016_j_heliyon_2021_e06564
crossref_primary_10_1371_journal_pone_0276241
crossref_primary_10_3389_fimmu_2022_931155
crossref_primary_10_7759_cureus_18981
crossref_primary_10_1007_s13337_021_00696_1
crossref_primary_10_3389_fmicb_2022_970233
crossref_primary_10_7554_eLife_59633
crossref_primary_10_1038_s41598_022_20849_6
crossref_primary_10_3390_ijms231710091
crossref_primary_10_4103_mjdrdypu_mjdrdypu_819_22
crossref_primary_10_1038_s41467_023_42430_z
crossref_primary_10_1093_immhor_vlae011
crossref_primary_10_1186_s13568_024_01719_y
crossref_primary_10_1111_sji_12895
crossref_primary_10_1016_j_csbj_2020_07_017
crossref_primary_10_1016_j_isci_2024_109975
crossref_primary_10_1186_s13073_020_00822_6
crossref_primary_10_3390_pathogens13111022
crossref_primary_10_1007_s00251_021_01250_5
crossref_primary_10_1002_slct_202002420
crossref_primary_10_1128_JVI_02002_20
crossref_primary_10_1126_sciadv_abb8097
crossref_primary_10_1002_cti2_1217
crossref_primary_10_1038_s41598_022_10230_y
crossref_primary_10_1128_JVI_00687_21
crossref_primary_10_1007_s10462_022_10251_z
crossref_primary_10_3390_v15071603
crossref_primary_10_1126_scitranslmed_abq1945
crossref_primary_10_1098_rsos_201141
crossref_primary_10_3390_microorganisms8101468
crossref_primary_10_3390_vaccines10071103
crossref_primary_10_1080_07391102_2020_1869092
crossref_primary_10_1016_j_micpath_2021_105105
crossref_primary_10_1007_s13205_021_03076_0
crossref_primary_10_1016_j_physrep_2020_07_005
crossref_primary_10_3389_fimmu_2023_1278534
crossref_primary_10_1038_s41598_020_70864_8
crossref_primary_10_1371_journal_pone_0266691
crossref_primary_10_1002_cti2_1423
crossref_primary_10_1016_j_mayocp_2020_07_021
crossref_primary_10_1016_j_jviromet_2023_114710
crossref_primary_10_4103_ijp_ijp_1146_20
crossref_primary_10_3390_vaccines10101606
crossref_primary_10_1016_j_jics_2021_100244
crossref_primary_10_1016_j_isci_2023_107394
crossref_primary_10_4049_immunohorizons_2300034
crossref_primary_10_1080_2162402X_2020_1807836
crossref_primary_10_1016_j_ebiom_2022_104401
crossref_primary_10_2174_1573405618666220606161924
crossref_primary_10_1016_j_crimmu_2022_08_005
crossref_primary_10_1016_j_jns_2022_120510
crossref_primary_10_1126_scitranslmed_abc3539
crossref_primary_10_3892_mmr_2021_12542
crossref_primary_10_4082_kjfm_20_0134
crossref_primary_10_1038_s41598_020_77547_4
crossref_primary_10_1126_sciimmunol_abg0791
crossref_primary_10_1155_2021_7251119
crossref_primary_10_3390_vaccines8020290
crossref_primary_10_3389_fmicb_2023_1217567
crossref_primary_10_1016_j_cell_2020_05_015
crossref_primary_10_1093_infdis_jiab176
crossref_primary_10_1111_andr_13612
crossref_primary_10_1016_j_coviro_2020_10_001
crossref_primary_10_1016_j_coi_2022_102178
crossref_primary_10_2478_rjr_2021_0018
crossref_primary_10_1097_PAI_0000000000000878
crossref_primary_10_1371_journal_pntd_0008676
crossref_primary_10_1016_j_cellimm_2020_104187
crossref_primary_10_1007_s10735_025_10375_w
crossref_primary_10_3389_fimmu_2021_696370
crossref_primary_10_3390_ijms25189814
crossref_primary_10_1007_s15010_022_01975_9
crossref_primary_10_3389_fimmu_2022_835830
crossref_primary_10_1038_s41598_021_83105_3
crossref_primary_10_1038_s41598_020_75972_z
crossref_primary_10_1021_acsnano_1c04091
crossref_primary_10_3390_bios11090301
crossref_primary_10_1002_jmv_28503
crossref_primary_10_3390_vaccines12111213
crossref_primary_10_1016_j_bbrc_2020_11_015
crossref_primary_10_3390_vaccines8040591
crossref_primary_10_1093_nar_gkab1248
crossref_primary_10_3390_vaccines10020251
crossref_primary_10_26508_lsa_202201759
crossref_primary_10_1172_jci_insight_151571
crossref_primary_10_3389_fimmu_2020_565730
crossref_primary_10_1128_CMR_00299_20
crossref_primary_10_1016_j_cmi_2021_05_025
crossref_primary_10_3389_fcimb_2020_560240
crossref_primary_10_1136_annrheumdis_2020_217522
crossref_primary_10_1016_j_jacig_2022_05_002
crossref_primary_10_3390_ph17010122
crossref_primary_10_1038_s41598_021_83949_9
crossref_primary_10_3389_fimmu_2022_1023255
crossref_primary_10_3390_pathogens13060520
crossref_primary_10_1515_hsz_2022_0323
crossref_primary_10_3389_fimmu_2020_01049
crossref_primary_10_3390_v16050757
crossref_primary_10_1111_eci_13818
crossref_primary_10_1016_j_biopha_2020_110195
crossref_primary_10_3390_ijms21155559
crossref_primary_10_1021_acscentsci_0c00742
crossref_primary_10_3390_vaccines13010030
crossref_primary_10_1126_science_abj9853
crossref_primary_10_1111_bjd_20093
crossref_primary_10_1016_j_bbagrm_2020_194655
crossref_primary_10_3390_biology12010037
crossref_primary_10_3390_v16050763
crossref_primary_10_1080_24725579_2021_1933269
crossref_primary_10_1093_cid_ciac310
crossref_primary_10_1038_s41598_023_43204_9
crossref_primary_10_4049_jimmunol_2000597
crossref_primary_10_1002_adfm_202105059
crossref_primary_10_3389_fimmu_2020_02008
crossref_primary_10_1093_cid_ciaa1451
crossref_primary_10_1126_sciimmunol_abd2071
crossref_primary_10_1126_sciimmunol_abo0535
crossref_primary_10_1186_s12859_020_03760_7
crossref_primary_10_1016_j_jinf_2021_02_023
crossref_primary_10_1016_j_ijbiomac_2020_06_213
crossref_primary_10_1080_25765299_2020_1852731
crossref_primary_10_1080_21645515_2020_1787067
crossref_primary_10_1111_imm_13234
crossref_primary_10_1016_j_intimp_2020_106980
crossref_primary_10_3390_vaccines12040379
crossref_primary_10_1038_s41598_023_48581_9
crossref_primary_10_1016_j_immuni_2020_05_002
crossref_primary_10_3389_fimmu_2022_867577
crossref_primary_10_1038_s41598_021_93145_4
crossref_primary_10_1186_s13073_021_00847_5
crossref_primary_10_3389_fpubh_2025_1522733
crossref_primary_10_1016_j_pep_2023_106263
crossref_primary_10_1186_s13073_021_00910_1
crossref_primary_10_2174_2666958702101010216
crossref_primary_10_3390_diagnostics12112854
crossref_primary_10_1080_22221751_2021_1978823
crossref_primary_10_1007_s13337_023_00820_3
crossref_primary_10_1186_s12879_022_07064_4
crossref_primary_10_3390_vaccines8030444
crossref_primary_10_1016_j_intimp_2020_106738
crossref_primary_10_31631_2073_3046_2022_21_1_4_20
crossref_primary_10_3389_fgene_2021_602196
crossref_primary_10_3390_ijms21176258
crossref_primary_10_3906_biy_2006_1
crossref_primary_10_1096_fj_202001351
crossref_primary_10_1016_j_cell_2020_09_038
crossref_primary_10_3390_molecules28062735
crossref_primary_10_1016_j_bbrc_2021_05_073
crossref_primary_10_1016_j_prmcm_2022_100049
crossref_primary_10_1038_s41587_022_01474_0
crossref_primary_10_1128_JVI_01837_20
crossref_primary_10_1007_s40203_021_00103_z
crossref_primary_10_1371_journal_pone_0262591
crossref_primary_10_1002_med_21756
crossref_primary_10_1371_journal_pone_0238089
crossref_primary_10_1080_07391102_2020_1838329
crossref_primary_10_3390_vaccines10101660
crossref_primary_10_1038_s41588_020_0700_8
crossref_primary_10_3389_fimmu_2022_1025500
crossref_primary_10_3389_fimmu_2021_692937
crossref_primary_10_3390_pathogens10060710
crossref_primary_10_17816_PED12663_76
crossref_primary_10_3390_jcm11020405
crossref_primary_10_1016_j_meegid_2021_105075
crossref_primary_10_1186_s12967_020_02515_5
crossref_primary_10_1007_s13337_023_00852_9
crossref_primary_10_1016_j_molimm_2022_10_016
crossref_primary_10_3390_v13020333
crossref_primary_10_3389_fmicb_2021_752739
crossref_primary_10_22159_ijpps_2022v14i11_46171
crossref_primary_10_3389_fimmu_2024_1321406
crossref_primary_10_3389_fcimb_2022_787411
crossref_primary_10_3389_fimmu_2020_587615
crossref_primary_10_3389_fimmu_2023_1091941
crossref_primary_10_1016_j_vaccine_2025_126787
crossref_primary_10_1016_j_heliyon_2021_e06836
crossref_primary_10_1038_s41564_020_00824_5
crossref_primary_10_1021_acsami_1c16930
crossref_primary_10_1042_BSR20211491
crossref_primary_10_4049_jimmunol_2001438
crossref_primary_10_1590_1678_4685_gmb_2020_0256
crossref_primary_10_1002_jmv_26254
crossref_primary_10_1021_acsomega_3c00944
crossref_primary_10_1002_ptr_6796
crossref_primary_10_1080_20477724_2020_1838190
crossref_primary_10_3390_ijms23052408
crossref_primary_10_1038_s41598_021_83730_y
crossref_primary_10_3389_fimmu_2021_679841
crossref_primary_10_1038_s41598_021_84387_3
crossref_primary_10_1038_s41598_022_18152_5
crossref_primary_10_2174_1386207324666210510164743
crossref_primary_10_3389_fimmu_2021_674279
crossref_primary_10_1038_s43018_020_00122_3
crossref_primary_10_3390_v13081595
crossref_primary_10_4049_jimmunol_2001407
crossref_primary_10_1007_s11030_020_10134_x
crossref_primary_10_3389_fimmu_2021_813300
crossref_primary_10_1021_acsptsci_4c00727
crossref_primary_10_1016_j_isci_2023_106335
crossref_primary_10_1039_D1NR00388G
crossref_primary_10_1080_1744666X_2021_1847640
crossref_primary_10_3389_fped_2021_668484
crossref_primary_10_4049_jimmunol_2001400
crossref_primary_10_1093_bib_bbae183
crossref_primary_10_1021_acs_analchem_0c02060
crossref_primary_10_1099_jgv_0_001513
crossref_primary_10_1111_jcmm_16586
crossref_primary_10_3389_fmicb_2020_01858
crossref_primary_10_2174_1573406417666210806154129
crossref_primary_10_1016_j_jaci_2020_05_001
crossref_primary_10_1038_s41467_023_38751_8
crossref_primary_10_1002_eji_202048908
crossref_primary_10_1021_acsbiomedchemau_3c00010
crossref_primary_10_3389_fcimb_2024_1415885
crossref_primary_10_1080_22221751_2020_1776161
crossref_primary_10_3390_ijms24021701
crossref_primary_10_1093_cid_ciaa1537
crossref_primary_10_1038_s41467_021_22210_3
crossref_primary_10_17352_ojpg_000010
crossref_primary_10_1093_intimm_dxac006
crossref_primary_10_1186_s12916_022_02367_4
crossref_primary_10_3390_ijms23116225
crossref_primary_10_3390_molecules26206182
crossref_primary_10_1016_j_antiviral_2022_105343
crossref_primary_10_1038_s41541_020_00237_9
crossref_primary_10_1093_ofid_ofab144
crossref_primary_10_3390_biom14101217
crossref_primary_10_1016_j_clindermatol_2021_01_020
crossref_primary_10_3390_s23083946
crossref_primary_10_1371_journal_pone_0265644
crossref_primary_10_3389_fbinf_2021_709533
crossref_primary_10_3390_vaccines11030548
crossref_primary_10_1016_j_xcrm_2020_100092
crossref_primary_10_1016_j_xinn_2022_100221
crossref_primary_10_1038_s41598_021_02898_5
crossref_primary_10_1111_all_14360
crossref_primary_10_3389_fimmu_2023_1154058
crossref_primary_10_1016_j_cels_2020_06_009
crossref_primary_10_1016_j_cbi_2020_109226
crossref_primary_10_1016_j_lfs_2020_117970
crossref_primary_10_1016_j_heliyon_2020_e04865
crossref_primary_10_1111_all_14364
crossref_primary_10_1186_s12866_021_02401_0
crossref_primary_10_24075_brsmu_2020_045
crossref_primary_10_3390_vaccines9111337
crossref_primary_10_31829_10_31829_2641_7456_ahs2020_4_1__142
crossref_primary_10_1016_j_antiviral_2024_105991
crossref_primary_10_1016_j_arr_2022_101687
crossref_primary_10_3389_fmed_2020_00471
crossref_primary_10_1093_jac_dkaa444
crossref_primary_10_1007_s41061_021_00353_7
crossref_primary_10_1016_j_bios_2020_112274
crossref_primary_10_1016_j_cell_2021_05_046
crossref_primary_10_1021_acs_jproteome_1c00783
crossref_primary_10_1038_s41598_020_77466_4
crossref_primary_10_3390_v14122775
crossref_primary_10_1038_s41422_021_00519_4
crossref_primary_10_3390_molecules25215088
crossref_primary_10_1016_j_medntd_2020_100048
crossref_primary_10_1016_j_bj_2020_09_005
crossref_primary_10_1016_j_jim_2022_113216
crossref_primary_10_1186_s43042_022_00224_w
crossref_primary_10_1016_j_jiph_2021_06_017
crossref_primary_10_1038_s41564_022_01106_y
crossref_primary_10_1016_j_addr_2021_02_004
crossref_primary_10_1016_j_jiph_2020_12_025
crossref_primary_10_1038_s41541_024_00957_2
crossref_primary_10_1111_eci_13661
crossref_primary_10_1038_s41598_024_66558_0
crossref_primary_10_3389_fimmu_2022_929849
crossref_primary_10_3390_ijms25042031
crossref_primary_10_1126_sciimmunol_abg6461
crossref_primary_10_22328_2413_5747_2020_6_3_67_75
crossref_primary_10_3390_microorganisms10010153
crossref_primary_10_1016_j_chom_2022_11_003
crossref_primary_10_1016_j_imu_2020_100458
crossref_primary_10_1016_j_imu_2020_100338
crossref_primary_10_1093_bib_bbac056
crossref_primary_10_1371_journal_pone_0246173
crossref_primary_10_3389_fimmu_2022_911859
crossref_primary_10_1155_2021_9923518
crossref_primary_10_1128_spectrum_03410_23
crossref_primary_10_3389_fimmu_2025_1538871
crossref_primary_10_3390_jpm11060475
crossref_primary_10_3390_vaccines9050520
crossref_primary_10_1371_journal_pone_0262311
crossref_primary_10_3390_biom12020188
crossref_primary_10_3103_S0096392522040125
crossref_primary_10_1016_j_addr_2020_12_006
crossref_primary_10_1016_j_ebiom_2023_104563
crossref_primary_10_1007_s41664_021_00197_6
crossref_primary_10_3389_fimmu_2021_774491
crossref_primary_10_1007_s40203_022_00128_y
crossref_primary_10_3390_plants10061213
crossref_primary_10_3390_ijms23137219
crossref_primary_10_1038_s41541_023_00795_8
crossref_primary_10_1002_jmv_26854
crossref_primary_10_1007_s11684_020_0786_5
crossref_primary_10_2471_BLT_20_253591
crossref_primary_10_33590_emj_20_00158
crossref_primary_10_1002_eji_202149556
crossref_primary_10_1016_j_antiviral_2024_105978
crossref_primary_10_1128_JVI_00647_20
crossref_primary_10_1371_journal_pcbi_1009726
crossref_primary_10_1016_j_vaccine_2021_01_011
crossref_primary_10_1093_ajcp_aqaa140
crossref_primary_10_1093_oxfimm_iqac003
crossref_primary_10_12873_411vique
crossref_primary_10_1016_j_lfs_2020_118919
crossref_primary_10_1371_journal_ppat_1012339
crossref_primary_10_3390_pathogens10060737
crossref_primary_10_3390_vaccines12080919
crossref_primary_10_1021_acsinfecdis_1c00410
crossref_primary_10_1021_acs_jproteome_0c00553
crossref_primary_10_1007_s12033_021_00373_0
crossref_primary_10_1007_s00500_020_05452_z
crossref_primary_10_2147_JIR_S277716
crossref_primary_10_1016_j_diagmicrobio_2020_115094
crossref_primary_10_1128_mBio_01991_20
crossref_primary_10_1002_jmv_26626
crossref_primary_10_1021_acssensors_0c01050
crossref_primary_10_3390_ijms21145145
crossref_primary_10_1126_sciadv_abf2467
crossref_primary_10_1016_j_isci_2022_105202
crossref_primary_10_1016_j_compbiomed_2023_107233
crossref_primary_10_1016_j_csbj_2023_09_044
crossref_primary_10_1038_s41467_021_22811_y
crossref_primary_10_1016_j_lfs_2020_117836
crossref_primary_10_1038_s41598_020_78758_5
crossref_primary_10_1016_j_xcrm_2022_100651
crossref_primary_10_1080_21645515_2020_1842034
crossref_primary_10_1016_j_celrep_2021_109570
crossref_primary_10_1128_JVI_02284_20
crossref_primary_10_37349_ei_2021_00003
crossref_primary_10_1021_acs_jproteome_0c00405
crossref_primary_10_3389_fimmu_2021_729189
crossref_primary_10_3389_fimmu_2023_1100594
crossref_primary_10_3390_v16071006
crossref_primary_10_1098_rsob_210240
crossref_primary_10_3389_fimmu_2024_1386160
crossref_primary_10_1016_j_meegid_2021_104823
crossref_primary_10_1080_07391102_2023_2228919
crossref_primary_10_1093_infdis_jiaa531
crossref_primary_10_1016_j_bios_2020_112479
crossref_primary_10_1093_database_baad065
crossref_primary_10_1016_j_scitotenv_2020_142363
crossref_primary_10_1109_TAI_2024_3487149
crossref_primary_10_1002_hep4_1600
crossref_primary_10_1093_jleuko_qiae111
crossref_primary_10_1016_j_cels_2021_09_013
crossref_primary_10_1186_s12859_020_03782_1
crossref_primary_10_1093_milmed_usab031
crossref_primary_10_3390_diagnostics11111990
crossref_primary_10_3389_fmicb_2020_02086
crossref_primary_10_3389_fimmu_2021_693054
crossref_primary_10_3390_biomedicines10071464
crossref_primary_10_1038_s41423_021_00717_5
crossref_primary_10_1016_j_cell_2020_09_007
crossref_primary_10_1002_btm2_10566
crossref_primary_10_3390_pathogens9060501
crossref_primary_10_1002_iid3_748
crossref_primary_10_2174_2666796701999200629003417
crossref_primary_10_3389_fcvm_2020_616527
crossref_primary_10_1128_spectrum_00503_23
crossref_primary_10_1021_acssensors_2c01016
crossref_primary_10_3389_fimmu_2020_561851
crossref_primary_10_3389_fimmu_2020_618685
crossref_primary_10_1016_j_ebiom_2020_102885
crossref_primary_10_1016_j_ijbiomac_2020_12_020
crossref_primary_10_1071_SH23191
crossref_primary_10_1172_jci_insight_148855
crossref_primary_10_1515_biol_2021_0062
crossref_primary_10_1177_09544062221098538
crossref_primary_10_1172_jci_insight_155145
crossref_primary_10_1016_j_ijmmb_2021_01_003
crossref_primary_10_3389_fimmu_2021_732693
crossref_primary_10_3390_vaccines10020236
crossref_primary_10_1038_s41598_022_15225_3
crossref_primary_10_1186_s41231_021_00093_2
crossref_primary_10_1111_sji_13151
crossref_primary_10_1002_cpz1_934
crossref_primary_10_1016_j_virusres_2021_198508
crossref_primary_10_1016_j_ijbiomac_2021_08_026
crossref_primary_10_1073_pnas_2024202118
crossref_primary_10_3389_fgene_2021_630542
crossref_primary_10_4081_hr_2020_8630
crossref_primary_10_1186_s41232_022_00239_1
crossref_primary_10_3390_ijms222011211
crossref_primary_10_1002_jcla_24479
crossref_primary_10_1038_s41596_020_0358_9
crossref_primary_10_1016_j_drup_2020_100733
crossref_primary_10_1016_j_ab_2022_114680
crossref_primary_10_1016_j_jiph_2020_06_015
crossref_primary_10_1039_D1RA07364H
crossref_primary_10_1080_14760584_2020_1825946
crossref_primary_10_1186_s12985_020_01437_4
crossref_primary_10_1016_j_meegid_2021_104712
crossref_primary_10_1038_s41577_022_00809_x
crossref_primary_10_4049_immunohorizons_2400003
crossref_primary_10_3389_fimmu_2021_701501
crossref_primary_10_1128_JVI_00510_20
crossref_primary_10_1016_j_compbiolchem_2025_108389
crossref_primary_10_1155_2021_6693909
crossref_primary_10_1016_j_rinp_2021_103813
crossref_primary_10_1515_revneuro_2020_0108
crossref_primary_10_2174_1570163819666220117161308
crossref_primary_10_3390_immuno2020022
crossref_primary_10_3390_vaccines8030408
crossref_primary_10_1016_j_celrep_2021_110210
crossref_primary_10_1371_journal_pone_0257191
crossref_primary_10_1016_j_cmi_2020_09_051
crossref_primary_10_1016_j_jri_2021_103464
Cites_doi 10.1016/j.vaccine.2006.01.058
10.1016/j.virol.2004.04.017
10.1016/j.jim.2015.03.022
10.1093/nar/gky1006
10.1016/j.antiviral.2009.09.004
10.1371/journal.pcbi.1002829
10.1093/nar/gkx346
10.4049/jimmunol.1302101
10.4049/jimmunol.1801090
10.1016/j.vaccine.2007.05.025
10.1093/intimm/dxn124
10.1016/j.immuni.2008.04.018
10.1093/nar/gkn254
10.4049/jimmunol.1403074
10.3390/v11010059
10.1093/bioinformatics/btu426
10.1038/nrmicro.2016.81
10.1073/pnas.1305227110
10.1021/cc0500607
10.1093/nar/gkr859
10.1111/j.1399-0039.2004.00314.x
10.1126/science.abb2507
10.1093/bioinformatics/bty463
10.1186/1471-2172-9-1
10.1016/j.chom.2020.02.001
10.1136/jcp.2005.029868
10.3389/fimmu.2017.01309
10.1016/j.bbrc.2006.03.152
10.1093/nar/gkz452
10.1371/journal.pone.0193382
10.3389/fimmu.2019.02125
10.1002/cpim.12
10.1034/j.1399-0039.2003.00062.x
10.1373/clinchem.2003.023184
10.4049/jimmunol.1700893
10.1021/acsinfecdis.6b00006
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
2020 Elsevier Inc. 2020 Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
– notice: 2020 Elsevier Inc. 2020 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.chom.2020.03.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1934-6069
EndPage 680.e2
ExternalDocumentID PMC7142693
32183941
10_1016_j_chom_2020_03_002
S1931312820301669
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: 75N93019C00001
– fundername: NIAID NIH HHS
  grantid: 75N93019C00076
– fundername: NIAID NIH HHS
  grantid: 75N93019C00065
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
5GY
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAKRW
AALRI
AAMRU
AAVLU
AAXUO
ABJNI
ABMAC
ACGFO
ACGFS
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
IHE
IXB
JIG
K97
M41
O-L
O9-
OK1
P2P
ROL
RPZ
SES
SSZ
TR2
UNMZH
53G
AAIKJ
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKBMS
AKYEP
APXCP
CITATION
HZ~
OZT
RIG
ZBA
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c549t-14bd5ccfb01c110c0a41ebffa98bfee4fed5d318987fb9aa08719b262d9a1c1b3
IEDL.DBID IXB
ISSN 1931-3128
1934-6069
IngestDate Thu Aug 21 18:30:31 EDT 2025
Fri Jul 11 03:23:14 EDT 2025
Thu Apr 03 07:05:08 EDT 2025
Tue Jul 01 02:44:22 EDT 2025
Thu Apr 24 23:02:29 EDT 2025
Sun Apr 06 06:53:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords COVID-19
B cell epitope
sequence conservation
SARS-CoV-2
infectious disease
SARS-CoV
coronavirus
T cell epitope
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c549t-14bd5ccfb01c110c0a41ebffa98bfee4fed5d318987fb9aa08719b262d9a1c1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1931312820301669
PMID 32183941
PQID 2378900405
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7142693
proquest_miscellaneous_2378900405
pubmed_primary_32183941
crossref_citationtrail_10_1016_j_chom_2020_03_002
crossref_primary_10_1016_j_chom_2020_03_002
elsevier_sciencedirect_doi_10_1016_j_chom_2020_03_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-08
PublicationDateYYYYMMDD 2020-04-08
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell host & microbe
PublicationTitleAlternate Cell Host Microbe
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wang, Zhang, Kuwahara, Li, Liu, Li, Zhu, Liu, Xu, Xie (bib31) 2016; 2
Paul, Dillon, Arlehamn, Huang, Davis, McKinney, Scriba, Sidney, Peters, Sette (bib19) 2015; 194
Krieger, Vriend (bib38) 2014; 30
Chow, Ho, Tam, Wu, Cheung, Chan, Ng, Hui, Ng, Au, Lo (bib4) 2006; 59
da Silva Antunes, Paul, Sidney, Weiskopf, Dan, Phillips, Mallal, Crotty, Sette, Lindestam Arlehamn (bib5) 2018; 13
Guo, Petric, Campbell, McGeer (bib10) 2004; 324
Song, Xu, Bao, Zhang, Yu, Qu, Zhu, Zhao, Han, Qin (bib26) 2019; 11
Cheung, Cheng, Sin, Chan, Xie (bib2) 2007; 25
de Wit, van Doremalen, Falzarano, Munster (bib6) 2016; 14
Hu, Li, Kao, Kou, Wang, Zhang, Zhang, Hao, Tsui, Ni (bib11) 2005; 7
Paul, Weiskopf, Angelo, Sidney, Peters, Sette (bib18) 2013; 191
Tsao, Lin, Jan, Leng, Chu, Yang, Chen (bib28) 2006; 344
Kohyama, Ohno, Suda, Taneichi, Yokoyama, Mori, Kobayashi, Hayashi, Uchida, Matsui (bib14) 2009; 84
Wu, Peng, Huang, Ding, Wang, Niu, Meng, Zhu, Zhang, Wang (bib34) 2020
Dhanda, Vita, Ha, Grifoni, Peters, Sette (bib7) 2018; 34
Grifoni, Angelo, Lopez, O’Rourke, Sidney, Cerpas, Balmaseda, Silveira, Maestri, Costa (bib8) 2017; 8
Jurtz, Paul, Andreatta, Marcatili, Peters, Nielsen (bib13) 2017; 199
Jespersen, Peters, Nielsen, Marcatili (bib12) 2017; 45
Grifoni, Costa-Ramos, Pham, Tian, Rosales, Seumois, Sidney, de Silva, Premkumar, Collins (bib9) 2018; 201
Kringelum, Lundegaard, Lund, Nielsen (bib15) 2012; 8
Pickett, Sadat, Zhang, Noronha, Squires, Hunt, Liu, Kumar, Zaremba, Gu (bib22) 2012; 40
Sidney, Peters, Frahm, Brander, Sette (bib25) 2008; 9
Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib33) 2020
Dhanda, Mahajan, Paul, Yan, Kim, Jespersen, Jurtz, Andreatta, Greenbaum, Marcatili, Sette, Nielsen, Peters (bib37) 2019; 47
Wang, Wen, Li, Yin, Zhu, Wang, Yang, Qin, You, Li (bib30) 2003; 49
Zhang, Wang, Kim, Haste-Andersen, Beaver, Bourne, Bui, Buus, Frankild, Greenbaum (bib36) 2008; 36
Paul, Lindestam Arlehamn, Scriba, Dillon, Oseroff, Hinz, McKinney, Carrasco Pro, Sidney, Peters, Sette (bib20) 2015; 422
Middleton, Menchaca, Rood, Komerofsky (bib17) 2003; 61
Shichijo, Keicho, Long, Quy, Phi, Ha, Ban, Itoyama, Hu, Komatsu (bib24) 2004; 64
Paul, Sidney, Sette, Peters (bib21) 2016; 114
Vita, Mahajan, Overton, Dhanda, Martini, Cantrell, Wheeler, Sette, Peters (bib29) 2019; 47
Tian, Grifoni, Sette, Weiskopf (bib27) 2019; 10
Liu, Leng, Lien, Chi, Huang, Lin, Lian, Chen, Hsieh, Chong (bib16) 2006; 24
Weiskopf, Angelo, de Azeredo, Sidney, Greenbaum, Fernando, Broadwater, Kolla, De Silva, de Silva (bib32) 2013; 110
Yang, James, Roti, Huston, Gebe, Kwok (bib35) 2009; 21
Carrasco Pro, Sidney, Paul, Lindestam Arlehamn, Weiskopf, Peters, Sette (bib1) 2015; 2015
Cheung, Cheng, Sin, Chan, Xie (bib3) 2008; 14
Sette, Moutaftsi, Moyron-Quiroz, McCausland, Davies, Johnston, Peters, Rafii-El-Idrissi Benhnia, Hoffmann, Su (bib23) 2008; 28
Chow (10.1016/j.chom.2020.03.002_bib4) 2006; 59
Cheung (10.1016/j.chom.2020.03.002_bib2) 2007; 25
Paul (10.1016/j.chom.2020.03.002_bib18) 2013; 191
Grifoni (10.1016/j.chom.2020.03.002_bib8) 2017; 8
Jurtz (10.1016/j.chom.2020.03.002_bib13) 2017; 199
Paul (10.1016/j.chom.2020.03.002_bib19) 2015; 194
Tsao (10.1016/j.chom.2020.03.002_bib28) 2006; 344
Sidney (10.1016/j.chom.2020.03.002_bib25) 2008; 9
Song (10.1016/j.chom.2020.03.002_bib26) 2019; 11
Paul (10.1016/j.chom.2020.03.002_bib21) 2016; 114
Paul (10.1016/j.chom.2020.03.002_bib20) 2015; 422
Wang (10.1016/j.chom.2020.03.002_bib31) 2016; 2
Guo (10.1016/j.chom.2020.03.002_bib10) 2004; 324
Kringelum (10.1016/j.chom.2020.03.002_bib15) 2012; 8
Middleton (10.1016/j.chom.2020.03.002_bib17) 2003; 61
Tian (10.1016/j.chom.2020.03.002_bib27) 2019; 10
Yang (10.1016/j.chom.2020.03.002_bib35) 2009; 21
de Wit (10.1016/j.chom.2020.03.002_bib6) 2016; 14
Dhanda (10.1016/j.chom.2020.03.002_bib7) 2018; 34
Wu (10.1016/j.chom.2020.03.002_bib34) 2020
Jespersen (10.1016/j.chom.2020.03.002_bib12) 2017; 45
Kohyama (10.1016/j.chom.2020.03.002_bib14) 2009; 84
Hu (10.1016/j.chom.2020.03.002_bib11) 2005; 7
Vita (10.1016/j.chom.2020.03.002_bib29) 2019; 47
Weiskopf (10.1016/j.chom.2020.03.002_bib32) 2013; 110
Shichijo (10.1016/j.chom.2020.03.002_bib24) 2004; 64
Liu (10.1016/j.chom.2020.03.002_bib16) 2006; 24
Cheung (10.1016/j.chom.2020.03.002_bib3) 2008; 14
Pickett (10.1016/j.chom.2020.03.002_bib22) 2012; 40
Wang (10.1016/j.chom.2020.03.002_bib30) 2003; 49
da Silva Antunes (10.1016/j.chom.2020.03.002_bib5) 2018; 13
Carrasco Pro (10.1016/j.chom.2020.03.002_bib1) 2015; 2015
Grifoni (10.1016/j.chom.2020.03.002_bib9) 2018; 201
Krieger (10.1016/j.chom.2020.03.002_bib38) 2014; 30
Sette (10.1016/j.chom.2020.03.002_bib23) 2008; 28
Zhang (10.1016/j.chom.2020.03.002_bib36) 2008; 36
Wrapp (10.1016/j.chom.2020.03.002_bib33) 2020
Dhanda (10.1016/j.chom.2020.03.002_bib37) 2019; 47
32714104 - SSRN. 2020 Feb 25;:3541361
References_xml – volume: 59
  start-page: 468
  year: 2006
  end-page: 476
  ident: bib4
  article-title: Specific epitopes of the structural and hypothetical proteins elicit variable humoral responses in SARS patients
  publication-title: J. Clin. Pathol.
– volume: 2015
  start-page: 763461
  year: 2015
  ident: bib1
  article-title: Automatic Generation of Validated Specific Epitope Sets
  publication-title: J. Immunol. Res.
– volume: 30
  start-page: 2981
  year: 2014
  end-page: 2982
  ident: bib38
  article-title: YASARA View - molecular graphics for all devices - from smartphones to workstations
  publication-title: Bionformatics
– volume: 2
  start-page: 361
  year: 2016
  end-page: 376
  ident: bib31
  article-title: Immunodominant SARS Coronavirus Epitopes in Humans Elicited both Enhancing and Neutralizing Effects on Infection in Non-human Primates
  publication-title: ACS Infect. Dis.
– volume: 114
  start-page: 18.19.1
  year: 2016
  end-page: 18.19.24
  ident: bib21
  article-title: TepiTool: A Pipeline for Computational Prediction of T Cell Epitope Candidates
  publication-title: Curr. Protoc. Immunol.
– volume: 10
  start-page: 2125
  year: 2019
  ident: bib27
  article-title: Human T Cell Response to Dengue Virus Infection
  publication-title: Front. Immunol.
– volume: 13
  start-page: e0193382
  year: 2018
  ident: bib5
  article-title: Correction: Definition of Human Epitopes Recognized in Tetanus Toxoid and Development of an Assay Strategy to Detect Ex Vivo Tetanus CD4+ T Cell Responses
  publication-title: PLoS One
– volume: 47
  start-page: D339
  year: 2019
  end-page: D343
  ident: bib29
  article-title: The Immune Epitope Database (IEDB): 2018 update
  publication-title: Nucleic Acids Res.
– volume: 84
  start-page: 168
  year: 2009
  end-page: 177
  ident: bib14
  article-title: Efficient induction of cytotoxic T lymphocytes specific for severe acute respiratory syndrome (SARS)-associated coronavirus by immunization with surface-linked liposomal peptides derived from a non-structural polyprotein 1a
  publication-title: Antiviral Res.
– volume: 194
  start-page: 6164
  year: 2015
  end-page: 6176
  ident: bib19
  article-title: A population response analysis approach to assign class II HLA-epitope restrictions
  publication-title: J. Immunol.
– volume: 25
  start-page: 6070
  year: 2007
  end-page: 6077
  ident: bib2
  article-title: Induction of T-cell response by a DNA vaccine encoding a novel HLA-A
  publication-title: Vaccine
– volume: 201
  start-page: 3487
  year: 2018
  end-page: 3491
  ident: bib9
  article-title: Cutting Edge: Transcriptional Profiling Reveals Multifunctional and Cytotoxic Antiviral Responses of Zika Virus-Specific CD8
  publication-title: J. Immunol.
– volume: 8
  start-page: 1309
  year: 2017
  ident: bib8
  article-title: Global Assessment of Dengue Virus-Specific CD4
  publication-title: Front. Immunol.
– volume: 8
  start-page: e1002829
  year: 2012
  ident: bib15
  article-title: Reliable B cell epitope predictions: impacts of method development and improved benchmarking
  publication-title: PLoS Comput. Biol.
– volume: 28
  start-page: 847
  year: 2008
  end-page: 858
  ident: bib23
  article-title: Selective CD4+ T cell help for antibody responses to a large viral pathogen: deterministic linkage of specificities
  publication-title: Immunity
– volume: 324
  start-page: 251
  year: 2004
  end-page: 256
  ident: bib10
  article-title: SARS corona virus peptides recognized by antibodies in the sera of convalescent cases
  publication-title: Virology
– volume: 47
  start-page: W502
  year: 2019
  end-page: W506
  ident: bib37
  article-title: IEDB-AR: immune epitope database-analysis resource in 2019
  publication-title: Nucleic Acids Res.
– volume: 40
  start-page: D593
  year: 2012
  end-page: D598
  ident: bib22
  article-title: ViPR: an open bioinformatics database and analysis resource for virology research
  publication-title: Nucleic Acids Res.
– volume: 14
  start-page: 523
  year: 2016
  end-page: 534
  ident: bib6
  article-title: SARS and MERS: recent insights into emerging coronaviruses
  publication-title: Nat. Rev. Microbiol.
– volume: 45
  start-page: W24
  year: 2017
  end-page: W29
  ident: bib12
  article-title: BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes
  publication-title: Nucleic Acids Res.
– volume: 64
  start-page: 600
  year: 2004
  end-page: 607
  ident: bib24
  article-title: Assessment of synthetic peptides of severe acute respiratory syndrome coronavirus recognized by long-lasting immunity
  publication-title: Tissue Antigens
– volume: 344
  start-page: 63
  year: 2006
  end-page: 71
  ident: bib28
  article-title: HLA-A
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 11
  year: 2019
  ident: bib26
  article-title: From SARS to MERS, Thrusting Coronaviruses into the Spotlight
  publication-title: Viruses
– volume: 199
  start-page: 3360
  year: 2017
  end-page: 3368
  ident: bib13
  article-title: NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data
  publication-title: J. Immunol.
– volume: 191
  start-page: 5831
  year: 2013
  end-page: 5839
  ident: bib18
  article-title: HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity
  publication-title: J. Immunol.
– year: 2020
  ident: bib34
  article-title: Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China
  publication-title: Cell Host Microbe
– volume: 49
  start-page: 1989
  year: 2003
  end-page: 1996
  ident: bib30
  article-title: Assessment of immunoreactive synthetic peptides from the structural proteins of severe acute respiratory syndrome coronavirus
  publication-title: Clin. Chem.
– volume: 24
  start-page: 3100
  year: 2006
  end-page: 3108
  ident: bib16
  article-title: Immunological characterizations of the nucleocapsid protein based SARS vaccine candidates
  publication-title: Vaccine
– volume: 110
  start-page: E2046
  year: 2013
  end-page: E2053
  ident: bib32
  article-title: Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2020
  ident: bib33
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
– volume: 7
  start-page: 648
  year: 2005
  end-page: 656
  ident: bib11
  article-title: Screening and identification of linear B-cell epitopes and entry-blocking peptide of severe acute respiratory syndrome (SARS)-associated coronavirus using synthetic overlapping peptide library
  publication-title: J. Comb. Chem.
– volume: 36
  start-page: W513-8
  year: 2008
  ident: bib36
  article-title: Immune epitope database analysis resource (IEDB-AR)
  publication-title: Nucleic Acids Res.
– volume: 34
  start-page: 3931
  year: 2018
  end-page: 3933
  ident: bib7
  article-title: ImmunomeBrowser: a tool to aggregate and visualize complex and heterogeneous epitopes in reference proteins
  publication-title: Bioinformatics
– volume: 21
  start-page: 63
  year: 2009
  end-page: 71
  ident: bib35
  article-title: Searching immunodominant epitopes prior to epidemic: HLA class II-restricted SARS-CoV spike protein epitopes in unexposed individuals
  publication-title: Int. Immunol.
– volume: 422
  start-page: 28
  year: 2015
  end-page: 34
  ident: bib20
  article-title: Development and validation of a broad scheme for prediction of HLA class II restricted T cell epitopes
  publication-title: J. Immunol. Methods
– volume: 14
  start-page: 27
  year: 2008
  end-page: 30
  ident: bib3
  article-title: Investigation of immunogenic T-cell epitopes in SARS virus nucleocapsid protein and their role in the prevention and treatment of SARS infection
  publication-title: Hong Kong Med. J.
– volume: 61
  start-page: 403
  year: 2003
  end-page: 407
  ident: bib17
  article-title: New allele frequency database: http://www.allelefrequencies.net
  publication-title: Tissue Antigens
– volume: 9
  start-page: 1
  year: 2008
  ident: bib25
  article-title: HLA class I supertypes: a revised and updated classification
  publication-title: BMC Immunol.
– volume: 24
  start-page: 3100
  year: 2006
  ident: 10.1016/j.chom.2020.03.002_bib16
  article-title: Immunological characterizations of the nucleocapsid protein based SARS vaccine candidates
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2006.01.058
– volume: 324
  start-page: 251
  year: 2004
  ident: 10.1016/j.chom.2020.03.002_bib10
  article-title: SARS corona virus peptides recognized by antibodies in the sera of convalescent cases
  publication-title: Virology
  doi: 10.1016/j.virol.2004.04.017
– volume: 422
  start-page: 28
  year: 2015
  ident: 10.1016/j.chom.2020.03.002_bib20
  article-title: Development and validation of a broad scheme for prediction of HLA class II restricted T cell epitopes
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2015.03.022
– volume: 47
  start-page: D339
  issue: D1
  year: 2019
  ident: 10.1016/j.chom.2020.03.002_bib29
  article-title: The Immune Epitope Database (IEDB): 2018 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1006
– volume: 84
  start-page: 168
  year: 2009
  ident: 10.1016/j.chom.2020.03.002_bib14
  article-title: Efficient induction of cytotoxic T lymphocytes specific for severe acute respiratory syndrome (SARS)-associated coronavirus by immunization with surface-linked liposomal peptides derived from a non-structural polyprotein 1a
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2009.09.004
– volume: 8
  start-page: e1002829
  year: 2012
  ident: 10.1016/j.chom.2020.03.002_bib15
  article-title: Reliable B cell epitope predictions: impacts of method development and improved benchmarking
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002829
– volume: 45
  start-page: W24
  issue: W1
  year: 2017
  ident: 10.1016/j.chom.2020.03.002_bib12
  article-title: BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx346
– volume: 191
  start-page: 5831
  year: 2013
  ident: 10.1016/j.chom.2020.03.002_bib18
  article-title: HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1302101
– volume: 201
  start-page: 3487
  year: 2018
  ident: 10.1016/j.chom.2020.03.002_bib9
  article-title: Cutting Edge: Transcriptional Profiling Reveals Multifunctional and Cytotoxic Antiviral Responses of Zika Virus-Specific CD8+ T Cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1801090
– volume: 25
  start-page: 6070
  year: 2007
  ident: 10.1016/j.chom.2020.03.002_bib2
  article-title: Induction of T-cell response by a DNA vaccine encoding a novel HLA-A∗0201 severe acute respiratory syndrome coronavirus epitope
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2007.05.025
– volume: 21
  start-page: 63
  year: 2009
  ident: 10.1016/j.chom.2020.03.002_bib35
  article-title: Searching immunodominant epitopes prior to epidemic: HLA class II-restricted SARS-CoV spike protein epitopes in unexposed individuals
  publication-title: Int. Immunol.
  doi: 10.1093/intimm/dxn124
– volume: 28
  start-page: 847
  year: 2008
  ident: 10.1016/j.chom.2020.03.002_bib23
  article-title: Selective CD4+ T cell help for antibody responses to a large viral pathogen: deterministic linkage of specificities
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.04.018
– volume: 36
  start-page: W513-8
  year: 2008
  ident: 10.1016/j.chom.2020.03.002_bib36
  article-title: Immune epitope database analysis resource (IEDB-AR)
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn254
– volume: 194
  start-page: 6164
  year: 2015
  ident: 10.1016/j.chom.2020.03.002_bib19
  article-title: A population response analysis approach to assign class II HLA-epitope restrictions
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1403074
– volume: 11
  year: 2019
  ident: 10.1016/j.chom.2020.03.002_bib26
  article-title: From SARS to MERS, Thrusting Coronaviruses into the Spotlight
  publication-title: Viruses
  doi: 10.3390/v11010059
– volume: 14
  start-page: 27
  issue: Suppl 4
  year: 2008
  ident: 10.1016/j.chom.2020.03.002_bib3
  article-title: Investigation of immunogenic T-cell epitopes in SARS virus nucleocapsid protein and their role in the prevention and treatment of SARS infection
  publication-title: Hong Kong Med. J.
– volume: 30
  start-page: 2981
  year: 2014
  ident: 10.1016/j.chom.2020.03.002_bib38
  article-title: YASARA View - molecular graphics for all devices - from smartphones to workstations
  publication-title: Bionformatics
  doi: 10.1093/bioinformatics/btu426
– volume: 14
  start-page: 523
  year: 2016
  ident: 10.1016/j.chom.2020.03.002_bib6
  article-title: SARS and MERS: recent insights into emerging coronaviruses
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2016.81
– volume: 110
  start-page: E2046
  year: 2013
  ident: 10.1016/j.chom.2020.03.002_bib32
  article-title: Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1305227110
– volume: 7
  start-page: 648
  year: 2005
  ident: 10.1016/j.chom.2020.03.002_bib11
  article-title: Screening and identification of linear B-cell epitopes and entry-blocking peptide of severe acute respiratory syndrome (SARS)-associated coronavirus using synthetic overlapping peptide library
  publication-title: J. Comb. Chem.
  doi: 10.1021/cc0500607
– volume: 40
  start-page: D593
  year: 2012
  ident: 10.1016/j.chom.2020.03.002_bib22
  article-title: ViPR: an open bioinformatics database and analysis resource for virology research
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr859
– volume: 2015
  start-page: 763461
  year: 2015
  ident: 10.1016/j.chom.2020.03.002_bib1
  article-title: Automatic Generation of Validated Specific Epitope Sets
  publication-title: J. Immunol. Res.
– volume: 64
  start-page: 600
  year: 2004
  ident: 10.1016/j.chom.2020.03.002_bib24
  article-title: Assessment of synthetic peptides of severe acute respiratory syndrome coronavirus recognized by long-lasting immunity
  publication-title: Tissue Antigens
  doi: 10.1111/j.1399-0039.2004.00314.x
– year: 2020
  ident: 10.1016/j.chom.2020.03.002_bib33
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
  doi: 10.1126/science.abb2507
– volume: 34
  start-page: 3931
  year: 2018
  ident: 10.1016/j.chom.2020.03.002_bib7
  article-title: ImmunomeBrowser: a tool to aggregate and visualize complex and heterogeneous epitopes in reference proteins
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty463
– volume: 9
  start-page: 1
  year: 2008
  ident: 10.1016/j.chom.2020.03.002_bib25
  article-title: HLA class I supertypes: a revised and updated classification
  publication-title: BMC Immunol.
  doi: 10.1186/1471-2172-9-1
– year: 2020
  ident: 10.1016/j.chom.2020.03.002_bib34
  article-title: Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.02.001
– volume: 59
  start-page: 468
  year: 2006
  ident: 10.1016/j.chom.2020.03.002_bib4
  article-title: Specific epitopes of the structural and hypothetical proteins elicit variable humoral responses in SARS patients
  publication-title: J. Clin. Pathol.
  doi: 10.1136/jcp.2005.029868
– volume: 8
  start-page: 1309
  year: 2017
  ident: 10.1016/j.chom.2020.03.002_bib8
  article-title: Global Assessment of Dengue Virus-Specific CD4+ T Cell Responses in Dengue-Endemic Areas
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.01309
– volume: 344
  start-page: 63
  year: 2006
  ident: 10.1016/j.chom.2020.03.002_bib28
  article-title: HLA-A∗0201 T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus nucleocapsid and spike proteins
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2006.03.152
– volume: 47
  start-page: W502
  year: 2019
  ident: 10.1016/j.chom.2020.03.002_bib37
  article-title: IEDB-AR: immune epitope database-analysis resource in 2019
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz452
– volume: 13
  start-page: e0193382
  year: 2018
  ident: 10.1016/j.chom.2020.03.002_bib5
  article-title: Correction: Definition of Human Epitopes Recognized in Tetanus Toxoid and Development of an Assay Strategy to Detect Ex Vivo Tetanus CD4+ T Cell Responses
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0193382
– volume: 10
  start-page: 2125
  year: 2019
  ident: 10.1016/j.chom.2020.03.002_bib27
  article-title: Human T Cell Response to Dengue Virus Infection
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.02125
– volume: 114
  start-page: 18.19.1
  year: 2016
  ident: 10.1016/j.chom.2020.03.002_bib21
  article-title: TepiTool: A Pipeline for Computational Prediction of T Cell Epitope Candidates
  publication-title: Curr. Protoc. Immunol.
  doi: 10.1002/cpim.12
– volume: 61
  start-page: 403
  year: 2003
  ident: 10.1016/j.chom.2020.03.002_bib17
  article-title: New allele frequency database: http://www.allelefrequencies.net
  publication-title: Tissue Antigens
  doi: 10.1034/j.1399-0039.2003.00062.x
– volume: 49
  start-page: 1989
  year: 2003
  ident: 10.1016/j.chom.2020.03.002_bib30
  article-title: Assessment of immunoreactive synthetic peptides from the structural proteins of severe acute respiratory syndrome coronavirus
  publication-title: Clin. Chem.
  doi: 10.1373/clinchem.2003.023184
– volume: 199
  start-page: 3360
  year: 2017
  ident: 10.1016/j.chom.2020.03.002_bib13
  article-title: NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1700893
– volume: 2
  start-page: 361
  year: 2016
  ident: 10.1016/j.chom.2020.03.002_bib31
  article-title: Immunodominant SARS Coronavirus Epitopes in Humans Elicited both Enhancing and Neutralizing Effects on Infection in Non-human Primates
  publication-title: ACS Infect. Dis.
  doi: 10.1021/acsinfecdis.6b00006
– reference: 32714104 - SSRN. 2020 Feb 25;:3541361
SSID ssj0055071
Score 2.7080681
Snippet Effective countermeasures against the recent emergence and rapid expansion of the 2019 novel coronavirus (SARS-CoV-2) require the development of data and tools...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 671
SubjectTerms B cell epitope
Betacoronavirus - genetics
Betacoronavirus - immunology
Computational Biology
coronavirus
Coronavirus Infections - immunology
Coronavirus Infections - virology
COVID-19
Databases, Protein
Epitopes, B-Lymphocyte - genetics
Epitopes, B-Lymphocyte - immunology
Epitopes, T-Lymphocyte - genetics
Epitopes, T-Lymphocyte - immunology
Humans
infectious disease
Pandemics
Pneumonia, Viral - immunology
Pneumonia, Viral - virology
SARS-CoV
SARS-CoV-2
sequence conservation
Sequence Homology
T cell epitope
Title A Sequence Homology and Bioinformatic Approach Can Predict Candidate Targets for Immune Responses to SARS-CoV-2
URI https://dx.doi.org/10.1016/j.chom.2020.03.002
https://www.ncbi.nlm.nih.gov/pubmed/32183941
https://www.proquest.com/docview/2378900405
https://pubmed.ncbi.nlm.nih.gov/PMC7142693
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA8iFHwptdr2-iEp-CbLbb724_F6KGdLRTwt9xay2YSetLvirQ_-953ZZA9P0Ye-7ccMhEwy80vmi5BDYQVPFc8TmSuFLcxAD5auTFyuuPKpF6zGq4GfZ9nsSn5fqMUWmQ65MBhWGXV_0Om9to5fxnE2xzfL5XgO0IMJUK8cUX2WYRKfkEWfxLf4NmhjLNfFgmeZJUgdE2dCjBf2I4EzIk9DoVP-nHF6Cj4fx1A-MEonb8jriCbpJAx4l2y55i15FfpL3u-RdkLnMVSaztq__VdqmpoCRayYCox0EuuK06lp6Pktum46fK6XeB1AL_tg8RUFenqK6SSOXoTIWreiXUvnk4t5Mm1_JXyfXJ0cX05nSeywkFg4F3YJk1WtrPVVyizgAJsayVzlvSmLyjsnvatVDbu-LHJflcakcLwqK57xujTAUYl3ZLtpG_eBUANArDaAGEoJVp9bk8nCG5MpbtF360aEDVOrbSw_jl0w_ughzuxaozg0ikOnQoM4RuRozXMTim-8SK0GiemNJaTBOrzI93UQr4a9hQ4T07j2bqW5wDRhUHNqRN4Hca_HIXpsKdmI5BsLYU2Adbs3_zTL33397pxh_rD4-J_j_UR28K0PHyo-k-3u9s59AWTUVQdwJjj9cdBvgH8ZPQyJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tixBcEG_K00jcUNTYjpP6WCpWLeyu0LaLerMcxxFFkKy22QP_npnYqSiIPXCLnBnJ8tgznz0vgLfSSZEqUSRZoRS1MEM9qL1OfKGEqtNa8oqeBk5O8_l59nGt1gcwG3JhKKwy6v6g03ttHUfGcTXHF5vNeInQg0tUr4JQfZ7rG3AT0UBB_RsW6_eDOqZ6XTy4lnlC5DFzJgR5UUMSvCSKNFQ6Ff-yTn-jzz-DKH-zSkf34G6Ek2waZnwfDnzzAG6FBpM_H0I7ZcsYK83m7Y9-lNmmYkgRS6YiI5vGwuJsZhv2-ZJ8Nx19Vxt6D2CrPlp8y5CeLSifxLOzEFrrt6xr2XJ6tkxm7ZdEPILzow-r2TyJLRYShxfDLuFZWSnn6jLlDoGAS23GfVnXVk_K2vus9pWq8NjrSVGX2toU71e6FLmotEWOUj6Gw6Zt_FNgFpFYZREy6AzNvnA2zya1tbkSjpy3fgR8WFrjYv1xaoPx3QyBZt8MicOQOEwqDYpjBO92PBeh-sa11GqQmNnbQwbNw7V8bwbxGjxc5DGxjW-vtkZIyhNGPadG8CSIezcP2YPLjI-g2NsIOwIq3L3_p9l87Qt4F5wSiOWz_5zva7g9X50cm-PF6afncIf-9LFEkxdw2F1e-ZcIk7ryVX8MfgFB5Q6v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sequence+Homology+and+Bioinformatic+Approach+Can+Predict+Candidate+Targets+for+Immune+Responses+to+SARS-CoV-2&rft.jtitle=Cell+host+%26+microbe&rft.au=Grifoni%2C+Alba&rft.au=Sidney%2C+John&rft.au=Zhang%2C+Yun&rft.au=Scheuermann%2C+Richard+H&rft.date=2020-04-08&rft.eissn=1934-6069&rft.volume=27&rft.issue=4&rft.spage=671&rft_id=info:doi/10.1016%2Fj.chom.2020.03.002&rft_id=info%3Apmid%2F32183941&rft.externalDocID=32183941
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon