A Sequence Homology and Bioinformatic Approach Can Predict Candidate Targets for Immune Responses to SARS-CoV-2
Effective countermeasures against the recent emergence and rapid expansion of the 2019 novel coronavirus (SARS-CoV-2) require the development of data and tools to understand and monitor its spread and immune responses to it. However, little information is available about the targets of immune respon...
Saved in:
Published in | Cell host & microbe Vol. 27; no. 4; pp. 671 - 680.e2 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
08.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Effective countermeasures against the recent emergence and rapid expansion of the 2019 novel coronavirus (SARS-CoV-2) require the development of data and tools to understand and monitor its spread and immune responses to it. However, little information is available about the targets of immune responses to SARS-CoV-2. We used the Immune Epitope Database and Analysis Resource (IEDB) to catalog available data related to other coronaviruses. This includes SARS-CoV, which has high sequence similarity to SARS-CoV-2 and is the best-characterized coronavirus in terms of epitope responses. We identified multiple specific regions in SARS-CoV-2 that have high homology to the SARS-CoV virus. Parallel bioinformatic predictions identified a priori potential B and T cell epitopes for SARS-CoV-2. The independent identification of the same regions using two approaches reflects the high probability that these regions are promising targets for immune recognition of SARS-CoV-2. These predictions can facilitate effective vaccine design against this virus of high priority.
[Display omitted]
•Ten experimentally defined regions within SARS-CoV have high homology with SARS-CoV-2•Parallel bioinformatics predicted potential B and T cell epitopes for SARS-CoV-2•Independent approaches identified the same immunodominant regions•The conserved immune regions have implications for vaccine design against multiple CoVs
Grifoni et al. identify potential targets for immune responses to the 2019 novel coronavirus (SARS-CoV-2) by sequence homology with closely related SARS-CoV and by a priori epitope prediction using bioinformatics approaches. This analysis provides essential information for understanding human immune responses to this virus and for evaluating diagnostic and vaccine candidates. |
---|---|
AbstractList | Effective countermeasures against the recent emergence and rapid expansion of the 2019 novel coronavirus (SARS-CoV-2) require the development of data and tools to understand and monitor its spread and immune responses to it. However, little information is available about the targets of immune responses to SARS-CoV-2. We used the Immune Epitope Database and Analysis Resource (IEDB) to catalog available data related to other coronaviruses. This includes SARS-CoV, which has high sequence similarity to SARS-CoV-2 and is the best-characterized coronavirus in terms of epitope responses. We identified multiple specific regions in SARS-CoV-2 that have high homology to the SARS-CoV virus. Parallel bioinformatic predictions identified a priori potential B and T cell epitopes for SARS-CoV-2. The independent identification of the same regions using two approaches reflects the high probability that these regions are promising targets for immune recognition of SARS-CoV-2. These predictions can facilitate effective vaccine design against this virus of high priority.Effective countermeasures against the recent emergence and rapid expansion of the 2019 novel coronavirus (SARS-CoV-2) require the development of data and tools to understand and monitor its spread and immune responses to it. However, little information is available about the targets of immune responses to SARS-CoV-2. We used the Immune Epitope Database and Analysis Resource (IEDB) to catalog available data related to other coronaviruses. This includes SARS-CoV, which has high sequence similarity to SARS-CoV-2 and is the best-characterized coronavirus in terms of epitope responses. We identified multiple specific regions in SARS-CoV-2 that have high homology to the SARS-CoV virus. Parallel bioinformatic predictions identified a priori potential B and T cell epitopes for SARS-CoV-2. The independent identification of the same regions using two approaches reflects the high probability that these regions are promising targets for immune recognition of SARS-CoV-2. These predictions can facilitate effective vaccine design against this virus of high priority. Effective countermeasures against the recent emergence and rapid expansion of the 2019 novel coronavirus (SARS-CoV-2) require the development of data and tools to understand and monitor its spread and immune responses to it. However, little information is available about the targets of immune responses to SARS-CoV-2. We used the Immune Epitope Database and Analysis Resource (IEDB) to catalog available data related to other coronaviruses. This includes SARS-CoV, which has high sequence similarity to SARS-CoV-2 and is the best-characterized coronavirus in terms of epitope responses. We identified multiple specific regions in SARS-CoV-2 that have high homology to the SARS-CoV virus. Parallel bioinformatic predictions identified a priori potential B and T cell epitopes for SARS-CoV-2. The independent identification of the same regions using two approaches reflects the high probability that these regions are promising targets for immune recognition of SARS-CoV-2. These predictions can facilitate effective vaccine design against this virus of high priority. • Ten experimentally defined regions within SARS-CoV have high homology with SARS-CoV-2 • Parallel bioinformatics predicted potential B and T cell epitopes for SARS-CoV-2 • Independent approaches identified the same immunodominant regions • The conserved immune regions have implications for vaccine design against multiple CoVs Grifoni et al. identify potential targets for immune responses to the 2019 novel coronavirus (SARS-CoV-2) by sequence homology with closely related SARS-CoV and by a priori epitope prediction using bioinformatics approaches. This analysis provides essential information for understanding human immune responses to this virus and for evaluating diagnostic and vaccine candidates. Effective countermeasures against the recent emergence and rapid expansion of the 2019 novel coronavirus (SARS-CoV-2) require the development of data and tools to understand and monitor its spread and immune responses to it. However, little information is available about the targets of immune responses to SARS-CoV-2. We used the Immune Epitope Database and Analysis Resource (IEDB) to catalog available data related to other coronaviruses. This includes SARS-CoV, which has high sequence similarity to SARS-CoV-2 and is the best-characterized coronavirus in terms of epitope responses. We identified multiple specific regions in SARS-CoV-2 that have high homology to the SARS-CoV virus. Parallel bioinformatic predictions identified a priori potential B and T cell epitopes for SARS-CoV-2. The independent identification of the same regions using two approaches reflects the high probability that these regions are promising targets for immune recognition of SARS-CoV-2. These predictions can facilitate effective vaccine design against this virus of high priority. [Display omitted] •Ten experimentally defined regions within SARS-CoV have high homology with SARS-CoV-2•Parallel bioinformatics predicted potential B and T cell epitopes for SARS-CoV-2•Independent approaches identified the same immunodominant regions•The conserved immune regions have implications for vaccine design against multiple CoVs Grifoni et al. identify potential targets for immune responses to the 2019 novel coronavirus (SARS-CoV-2) by sequence homology with closely related SARS-CoV and by a priori epitope prediction using bioinformatics approaches. This analysis provides essential information for understanding human immune responses to this virus and for evaluating diagnostic and vaccine candidates. Effective countermeasures against the recent emergence and rapid expansion of the 2019 novel coronavirus (SARS-CoV-2) require the development of data and tools to understand and monitor its spread and immune responses to it. However, little information is available about the targets of immune responses to SARS-CoV-2. We used the Immune Epitope Database and Analysis Resource (IEDB) to catalog available data related to other coronaviruses. This includes SARS-CoV, which has high sequence similarity to SARS-CoV-2 and is the best-characterized coronavirus in terms of epitope responses. We identified multiple specific regions in SARS-CoV-2 that have high homology to the SARS-CoV virus. Parallel bioinformatic predictions identified a priori potential B and T cell epitopes for SARS-CoV-2. The independent identification of the same regions using two approaches reflects the high probability that these regions are promising targets for immune recognition of SARS-CoV-2. These predictions can facilitate effective vaccine design against this virus of high priority. |
Author | Sidney, John Sette, Alessandro Scheuermann, Richard H. Grifoni, Alba Peters, Bjoern Zhang, Yun |
AuthorAffiliation | 2 J. Craig Venter Institute, La Jolla, CA 92037, USA 4 Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA 1 Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA 3 Department of Pathology, University of California, San Diego, San Diego, CA 92093, USA |
AuthorAffiliation_xml | – name: 3 Department of Pathology, University of California, San Diego, San Diego, CA 92093, USA – name: 1 Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA – name: 4 Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA – name: 2 J. Craig Venter Institute, La Jolla, CA 92037, USA |
Author_xml | – sequence: 1 givenname: Alba surname: Grifoni fullname: Grifoni, Alba organization: Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA – sequence: 2 givenname: John surname: Sidney fullname: Sidney, John organization: Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA – sequence: 3 givenname: Yun surname: Zhang fullname: Zhang, Yun organization: J. Craig Venter Institute, La Jolla, CA 92037, USA – sequence: 4 givenname: Richard H. surname: Scheuermann fullname: Scheuermann, Richard H. organization: Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA – sequence: 5 givenname: Bjoern surname: Peters fullname: Peters, Bjoern organization: Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA – sequence: 6 givenname: Alessandro surname: Sette fullname: Sette, Alessandro email: alex@lji.org organization: Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32183941$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1rFDEYhYNU7If-AS8kl97MmI_5CoiwLmoLBaVbvQ2Z5J3dLDPJmGQL_fdm3FbUi17lhZznHDjnHJ047wCh15SUlNDm3b7UOz-VjDBSEl4Swp6hMyp4VTSkESe_b1pwyrpTdB7jnpC6Ji19gU45ox0XFT1DfoU38PMATgO-9JMf_fYeK2fwR-utG3yYVLIar-Y5eKV3eK0c_hbAWJ2W21ijEuBbFbaQIs56fDVNBwf4BuLsXYSIk8eb1c2mWPsfBXuJng9qjPDq4b1A3z9_ul1fFtdfv1ytV9eFriuRClr1ptZ66AnVlBJNVEWhHwYlun4AqAYwteG0E1079EIp0rVU9KxhRqhM9PwCfTj6zod-AqPBpaBGOQc7qXAvvbLy3x9nd3Lr72RLK9YIng3ePhgEn_uJSU42ahhH5cAfomS87QQhFamz9M3fWX9CHlvOgu4o0MHHGGCQ2qbcq1-i7Sgpkcugci-XQeUyqCRc5kEzyv5DH92fhN4fIcgN31kIMmq7TGxsAJ2k8fYp_Bcj4LtQ |
CitedBy_id | crossref_primary_10_1155_2022_2102937 crossref_primary_10_1016_j_cell_2022_01_027 crossref_primary_10_1016_j_jcyt_2020_08_009 crossref_primary_10_1186_s12916_022_02252_0 crossref_primary_10_3389_fgene_2022_1028081 crossref_primary_10_1080_19390211_2020_1834049 crossref_primary_10_3389_fimmu_2022_812393 crossref_primary_10_1016_j_celrep_2023_112827 crossref_primary_10_1080_07391102_2022_2146752 crossref_primary_10_1002_jemt_23551 crossref_primary_10_1038_s41587_021_01131_y crossref_primary_10_1093_bib_bbab496 crossref_primary_10_1051_medsci_2020168 crossref_primary_10_1128_Spectrum_00458_21 crossref_primary_10_1016_j_compbiomed_2020_104054 crossref_primary_10_3389_fmicb_2022_842232 crossref_primary_10_3390_molecules25184086 crossref_primary_10_3390_biology10080789 crossref_primary_10_1038_s42003_021_02885_6 crossref_primary_10_3390_vaccines8020183 crossref_primary_10_1021_acsinfecdis_2c00204 crossref_primary_10_1007_s12192_021_01244_y crossref_primary_10_1080_08916934_2023_2259133 crossref_primary_10_3389_fimmu_2022_974364 crossref_primary_10_1128_mSphere_00224_21 crossref_primary_10_1002_jmv_28190 crossref_primary_10_1016_j_ijid_2021_02_090 crossref_primary_10_3389_fmed_2021_687220 crossref_primary_10_1016_j_rinp_2021_104483 crossref_primary_10_3389_fimmu_2022_884433 crossref_primary_10_1038_s41423_020_00523_5 crossref_primary_10_1080_08830185_2020_1800688 crossref_primary_10_1016_j_meegid_2021_104973 crossref_primary_10_1007_s00253_022_12230_4 crossref_primary_10_1016_j_nmni_2020_100817 crossref_primary_10_1080_07391102_2022_2075468 crossref_primary_10_1016_j_isci_2021_102298 crossref_primary_10_1016_j_meegid_2020_104351 crossref_primary_10_1038_s41598_021_85202_9 crossref_primary_10_3389_fmicb_2023_1264612 crossref_primary_10_1152_ajpcell_00260_2020 crossref_primary_10_1038_s41565_020_0737_y crossref_primary_10_1074_mcp_RA120_002314 crossref_primary_10_1021_acsabm_1c01238 crossref_primary_10_1080_21645515_2020_1808410 crossref_primary_10_1016_j_ebiom_2020_103132 crossref_primary_10_3389_fimmu_2022_914167 crossref_primary_10_1016_j_xcrm_2023_101088 crossref_primary_10_1172_JCI140965 crossref_primary_10_1111_trf_16819 crossref_primary_10_3390_ijms22052630 crossref_primary_10_1016_j_ijbiomac_2022_06_021 crossref_primary_10_3389_fimmu_2021_727989 crossref_primary_10_1016_j_jviromet_2024_114995 crossref_primary_10_1021_acsinfecdis_0c00274 crossref_primary_10_4103_jomfp_JOMFP_334_20 crossref_primary_10_1016_j_nexres_2025_100215 crossref_primary_10_1186_s40779_021_00342_3 crossref_primary_10_3390_pathogens9050324 crossref_primary_10_1016_j_compbiomed_2020_104158 crossref_primary_10_1021_acs_jproteome_0c00273 crossref_primary_10_3389_fimmu_2021_636768 crossref_primary_10_1038_s41598_020_73371_y crossref_primary_10_3389_fimmu_2020_579480 crossref_primary_10_1016_j_addr_2021_01_007 crossref_primary_10_1016_j_mehy_2020_110049 crossref_primary_10_1016_j_virusres_2020_198082 crossref_primary_10_4049_jimmunol_2000922 crossref_primary_10_1016_j_immuno_2022_100020 crossref_primary_10_1084_jem_20202617 crossref_primary_10_1002_advs_202404159 crossref_primary_10_1038_s41467_021_22297_8 crossref_primary_10_1016_j_chom_2022_02_003 crossref_primary_10_3390_covid1030047 crossref_primary_10_1016_j_micinf_2020_10_004 crossref_primary_10_7717_peerj_13380 crossref_primary_10_1016_j_imu_2021_100578 crossref_primary_10_1021_acsnano_0c08494 crossref_primary_10_1073_pnas_2111815118 crossref_primary_10_3389_fmicb_2023_1295678 crossref_primary_10_1016_j_compbiomed_2021_104325 crossref_primary_10_1128_spectrum_00324_23 crossref_primary_10_3390_v14081837 crossref_primary_10_1016_j_intimp_2021_107568 crossref_primary_10_1128_jcm_00140_22 crossref_primary_10_1016_j_csbj_2021_06_041 crossref_primary_10_1038_s41431_022_01108_8 crossref_primary_10_1016_j_virol_2022_08_010 crossref_primary_10_1093_bioinformatics_btab406 crossref_primary_10_1016_j_gendis_2021_05_006 crossref_primary_10_3390_v14081707 crossref_primary_10_1007_s00044_020_02610_8 crossref_primary_10_1016_j_celrep_2021_109179 crossref_primary_10_1021_acsinfecdis_4c00544 crossref_primary_10_1007_s00251_022_01284_3 crossref_primary_10_3389_fimmu_2021_728936 crossref_primary_10_3389_fcimb_2020_00340 crossref_primary_10_1016_j_asoc_2021_108280 crossref_primary_10_1016_j_meegid_2020_104382 crossref_primary_10_1016_j_vaccine_2024_05_040 crossref_primary_10_3389_fimmu_2021_641900 crossref_primary_10_1093_bib_bbaa359 crossref_primary_10_1126_science_abg8985 crossref_primary_10_3390_v13050796 crossref_primary_10_1016_j_celrep_2021_110167 crossref_primary_10_1590_1678_4685_gmb_2021_0036 crossref_primary_10_35366_99463 crossref_primary_10_3390_vaccines10040581 crossref_primary_10_1128_msystems_00310_21 crossref_primary_10_1111_bcpt_13600 crossref_primary_10_1073_pnas_2012358117 crossref_primary_10_1016_j_humimm_2020_08_001 crossref_primary_10_1128_mSphere_00203_21 crossref_primary_10_1016_j_arcmed_2022_10_007 crossref_primary_10_1016_j_jsps_2020_11_014 crossref_primary_10_1186_s12929_021_00740_8 crossref_primary_10_3389_fphys_2022_867444 crossref_primary_10_1089_vim_2021_0121 crossref_primary_10_15406_ghoa_2021_12_00461 crossref_primary_10_1126_scitranslmed_abd5487 crossref_primary_10_1109_TCBB_2023_3311444 crossref_primary_10_3390_v13050787 crossref_primary_10_1016_j_tim_2020_05_012 crossref_primary_10_1016_j_isci_2021_102096 crossref_primary_10_1016_j_xcrm_2020_100036 crossref_primary_10_3390_su142416761 crossref_primary_10_1186_s12863_022_01040_2 crossref_primary_10_1016_j_biopha_2020_110914 crossref_primary_10_1016_j_colcom_2021_100533 crossref_primary_10_1016_j_meegid_2020_104489 crossref_primary_10_4103_RPS_RPS_82_24 crossref_primary_10_3389_fimmu_2020_01870 crossref_primary_10_2144_fsoa_2022_0048 crossref_primary_10_1016_j_arcmed_2021_01_004 crossref_primary_10_2174_0122113525255835240107162255 crossref_primary_10_3390_jfb15030058 crossref_primary_10_1002_iid3_358 crossref_primary_10_1016_j_mehy_2020_110082 crossref_primary_10_33590_emjallergyimmunol_21_00088 crossref_primary_10_1007_s15010_023_02142_4 crossref_primary_10_1016_j_crimmu_2022_06_001 crossref_primary_10_1002_cbic_202300103 crossref_primary_10_1128_Spectrum_01416_21 crossref_primary_10_1152_physiolgenomics_00033_2020 crossref_primary_10_1186_s40249_020_00713_3 crossref_primary_10_1016_j_cels_2020_11_005 crossref_primary_10_1016_j_talanta_2021_122691 crossref_primary_10_3389_fimmu_2020_565278 crossref_primary_10_3390_ijms24129873 crossref_primary_10_3390_vaccines10111917 crossref_primary_10_3390_ijms21124546 crossref_primary_10_1038_s41541_021_00321_8 crossref_primary_10_3389_fmolb_2022_761173 crossref_primary_10_1016_j_bios_2021_112969 crossref_primary_10_3389_fimmu_2022_930252 crossref_primary_10_1093_bib_bbab456 crossref_primary_10_1093_database_baab059 crossref_primary_10_1016_j_ijid_2023_09_001 crossref_primary_10_3390_healthcare8020181 crossref_primary_10_1016_j_bmc_2021_116040 crossref_primary_10_1038_s41392_020_00352_y crossref_primary_10_1016_j_xcrm_2021_100312 crossref_primary_10_1016_j_cell_2021_01_050 crossref_primary_10_1016_j_heliyon_2024_e35325 crossref_primary_10_1016_j_vaccine_2023_09_022 crossref_primary_10_3389_fimmu_2020_601886 crossref_primary_10_1093_cid_ciac057 crossref_primary_10_1039_D1AN01458G crossref_primary_10_1039_D1BM01060C crossref_primary_10_1186_s13578_022_00822_6 crossref_primary_10_1371_journal_pone_0279428 crossref_primary_10_1016_j_cca_2023_117390 crossref_primary_10_1007_s00044_021_02826_2 crossref_primary_10_1002_jmv_27017 crossref_primary_10_3389_fimmu_2020_01581 crossref_primary_10_1002_jmv_28225 crossref_primary_10_1038_s41598_021_88696_5 crossref_primary_10_36290_neu_2020_121 crossref_primary_10_1007_s00109_020_01961_4 crossref_primary_10_1093_femspd_ftac001 crossref_primary_10_4110_in_2021_21_e4 crossref_primary_10_1126_science_abe1107 crossref_primary_10_1016_j_matt_2020_09_027 crossref_primary_10_4236_health_2021_133023 crossref_primary_10_1002_advs_202103248 crossref_primary_10_1038_s41467_020_18450_4 crossref_primary_10_1080_21655979_2022_2076390 crossref_primary_10_3389_fgene_2021_586569 crossref_primary_10_1039_D0CC08265A crossref_primary_10_1186_s12964_024_01818_0 crossref_primary_10_1002_adhm_202102089 crossref_primary_10_1016_j_celrep_2020_108454 crossref_primary_10_3389_fimmu_2020_01441 crossref_primary_10_1016_j_nmni_2020_100786 crossref_primary_10_1038_s41598_021_88310_8 crossref_primary_10_1002_cti2_1410 crossref_primary_10_1016_j_immuni_2020_11_015 crossref_primary_10_1080_07391102_2020_1839563 crossref_primary_10_1007_s00216_022_03918_7 crossref_primary_10_3389_fimmu_2021_635942 crossref_primary_10_1016_j_jviromet_2022_114463 crossref_primary_10_1038_s41598_024_52250_w crossref_primary_10_3390_v13050749 crossref_primary_10_1002_acg2_101 crossref_primary_10_1007_s00705_021_04961_y crossref_primary_10_3389_fimmu_2023_1131985 crossref_primary_10_1186_s43141_022_00344_1 crossref_primary_10_1080_17476348_2020_1782197 crossref_primary_10_3233_JIFS_221883 crossref_primary_10_1016_j_jbi_2021_103920 crossref_primary_10_1016_j_imbio_2022_152287 crossref_primary_10_3389_fped_2020_595539 crossref_primary_10_3390_pharmaceutics15051562 crossref_primary_10_1093_bib_bbaa340 crossref_primary_10_19163_1994_9480_2021_2_78__18_27 crossref_primary_10_1016_j_celrep_2020_108666 crossref_primary_10_1111_mec_15730 crossref_primary_10_3389_fimmu_2022_1080897 crossref_primary_10_1016_j_prevetmed_2024_106303 crossref_primary_10_1021_acs_analchem_3c01522 crossref_primary_10_1371_journal_pgph_0001566 crossref_primary_10_3390_molecules26133882 crossref_primary_10_1016_j_immuni_2020_11_004 crossref_primary_10_1093_bioinformatics_btab467 crossref_primary_10_3389_fimmu_2022_879946 crossref_primary_10_1007_s10989_020_10140_5 crossref_primary_10_2196_19371 crossref_primary_10_3389_fimmu_2022_931372 crossref_primary_10_3389_fimmu_2021_772511 crossref_primary_10_1016_j_nano_2022_102527 crossref_primary_10_3389_fmedt_2020_553478 crossref_primary_10_1186_s13073_020_00767_w crossref_primary_10_1002_advs_202207474 crossref_primary_10_1016_j_intimp_2021_108491 crossref_primary_10_1038_s41591_020_01143_2 crossref_primary_10_1093_pcmedi_pbaa017 crossref_primary_10_1002_eji_202049101 crossref_primary_10_1007_s13337_020_00632_9 crossref_primary_10_1080_07391102_2023_2273438 crossref_primary_10_1371_journal_pone_0307873 crossref_primary_10_1038_s41467_023_43189_z crossref_primary_10_1038_s42003_023_04730_4 crossref_primary_10_3390_nu12113512 crossref_primary_10_1371_journal_pbio_3001265 crossref_primary_10_1007_s13346_021_00945_2 crossref_primary_10_1186_s12967_020_02675_4 crossref_primary_10_1016_j_isci_2021_102311 crossref_primary_10_1146_annurev_immunol_101721_061120 crossref_primary_10_3389_fimmu_2023_1160065 crossref_primary_10_1016_j_jviromet_2021_114146 crossref_primary_10_1371_journal_pone_0258645 crossref_primary_10_3389_fmicb_2022_845316 crossref_primary_10_1038_s41467_021_22905_7 crossref_primary_10_1039_D0RA04395H crossref_primary_10_3390_life13020402 crossref_primary_10_1172_JCI142081 crossref_primary_10_1007_s00284_022_03003_3 crossref_primary_10_3389_fcell_2020_00476 crossref_primary_10_4274_jtgga_galenos_2023_2023_3_12 crossref_primary_10_1002_jmv_27285 crossref_primary_10_3389_fphar_2020_01278 crossref_primary_10_1038_s41467_024_45043_2 crossref_primary_10_1111_tan_14387 crossref_primary_10_3390_diagnostics12020381 crossref_primary_10_3390_s20226591 crossref_primary_10_1002_1873_3468_13845 crossref_primary_10_1093_glycob_cwab044 crossref_primary_10_1038_s41467_020_16638_2 crossref_primary_10_1172_JCI145476 crossref_primary_10_1038_s41392_021_00610_7 crossref_primary_10_1016_j_heliyon_2021_e06564 crossref_primary_10_1371_journal_pone_0276241 crossref_primary_10_3389_fimmu_2022_931155 crossref_primary_10_7759_cureus_18981 crossref_primary_10_1007_s13337_021_00696_1 crossref_primary_10_3389_fmicb_2022_970233 crossref_primary_10_7554_eLife_59633 crossref_primary_10_1038_s41598_022_20849_6 crossref_primary_10_3390_ijms231710091 crossref_primary_10_4103_mjdrdypu_mjdrdypu_819_22 crossref_primary_10_1038_s41467_023_42430_z crossref_primary_10_1093_immhor_vlae011 crossref_primary_10_1186_s13568_024_01719_y crossref_primary_10_1111_sji_12895 crossref_primary_10_1016_j_csbj_2020_07_017 crossref_primary_10_1016_j_isci_2024_109975 crossref_primary_10_1186_s13073_020_00822_6 crossref_primary_10_3390_pathogens13111022 crossref_primary_10_1007_s00251_021_01250_5 crossref_primary_10_1002_slct_202002420 crossref_primary_10_1128_JVI_02002_20 crossref_primary_10_1126_sciadv_abb8097 crossref_primary_10_1002_cti2_1217 crossref_primary_10_1038_s41598_022_10230_y crossref_primary_10_1128_JVI_00687_21 crossref_primary_10_1007_s10462_022_10251_z crossref_primary_10_3390_v15071603 crossref_primary_10_1126_scitranslmed_abq1945 crossref_primary_10_1098_rsos_201141 crossref_primary_10_3390_microorganisms8101468 crossref_primary_10_3390_vaccines10071103 crossref_primary_10_1080_07391102_2020_1869092 crossref_primary_10_1016_j_micpath_2021_105105 crossref_primary_10_1007_s13205_021_03076_0 crossref_primary_10_1016_j_physrep_2020_07_005 crossref_primary_10_3389_fimmu_2023_1278534 crossref_primary_10_1038_s41598_020_70864_8 crossref_primary_10_1371_journal_pone_0266691 crossref_primary_10_1002_cti2_1423 crossref_primary_10_1016_j_mayocp_2020_07_021 crossref_primary_10_1016_j_jviromet_2023_114710 crossref_primary_10_4103_ijp_ijp_1146_20 crossref_primary_10_3390_vaccines10101606 crossref_primary_10_1016_j_jics_2021_100244 crossref_primary_10_1016_j_isci_2023_107394 crossref_primary_10_4049_immunohorizons_2300034 crossref_primary_10_1080_2162402X_2020_1807836 crossref_primary_10_1016_j_ebiom_2022_104401 crossref_primary_10_2174_1573405618666220606161924 crossref_primary_10_1016_j_crimmu_2022_08_005 crossref_primary_10_1016_j_jns_2022_120510 crossref_primary_10_1126_scitranslmed_abc3539 crossref_primary_10_3892_mmr_2021_12542 crossref_primary_10_4082_kjfm_20_0134 crossref_primary_10_1038_s41598_020_77547_4 crossref_primary_10_1126_sciimmunol_abg0791 crossref_primary_10_1155_2021_7251119 crossref_primary_10_3390_vaccines8020290 crossref_primary_10_3389_fmicb_2023_1217567 crossref_primary_10_1016_j_cell_2020_05_015 crossref_primary_10_1093_infdis_jiab176 crossref_primary_10_1111_andr_13612 crossref_primary_10_1016_j_coviro_2020_10_001 crossref_primary_10_1016_j_coi_2022_102178 crossref_primary_10_2478_rjr_2021_0018 crossref_primary_10_1097_PAI_0000000000000878 crossref_primary_10_1371_journal_pntd_0008676 crossref_primary_10_1016_j_cellimm_2020_104187 crossref_primary_10_1007_s10735_025_10375_w crossref_primary_10_3389_fimmu_2021_696370 crossref_primary_10_3390_ijms25189814 crossref_primary_10_1007_s15010_022_01975_9 crossref_primary_10_3389_fimmu_2022_835830 crossref_primary_10_1038_s41598_021_83105_3 crossref_primary_10_1038_s41598_020_75972_z crossref_primary_10_1021_acsnano_1c04091 crossref_primary_10_3390_bios11090301 crossref_primary_10_1002_jmv_28503 crossref_primary_10_3390_vaccines12111213 crossref_primary_10_1016_j_bbrc_2020_11_015 crossref_primary_10_3390_vaccines8040591 crossref_primary_10_1093_nar_gkab1248 crossref_primary_10_3390_vaccines10020251 crossref_primary_10_26508_lsa_202201759 crossref_primary_10_1172_jci_insight_151571 crossref_primary_10_3389_fimmu_2020_565730 crossref_primary_10_1128_CMR_00299_20 crossref_primary_10_1016_j_cmi_2021_05_025 crossref_primary_10_3389_fcimb_2020_560240 crossref_primary_10_1136_annrheumdis_2020_217522 crossref_primary_10_1016_j_jacig_2022_05_002 crossref_primary_10_3390_ph17010122 crossref_primary_10_1038_s41598_021_83949_9 crossref_primary_10_3389_fimmu_2022_1023255 crossref_primary_10_3390_pathogens13060520 crossref_primary_10_1515_hsz_2022_0323 crossref_primary_10_3389_fimmu_2020_01049 crossref_primary_10_3390_v16050757 crossref_primary_10_1111_eci_13818 crossref_primary_10_1016_j_biopha_2020_110195 crossref_primary_10_3390_ijms21155559 crossref_primary_10_1021_acscentsci_0c00742 crossref_primary_10_3390_vaccines13010030 crossref_primary_10_1126_science_abj9853 crossref_primary_10_1111_bjd_20093 crossref_primary_10_1016_j_bbagrm_2020_194655 crossref_primary_10_3390_biology12010037 crossref_primary_10_3390_v16050763 crossref_primary_10_1080_24725579_2021_1933269 crossref_primary_10_1093_cid_ciac310 crossref_primary_10_1038_s41598_023_43204_9 crossref_primary_10_4049_jimmunol_2000597 crossref_primary_10_1002_adfm_202105059 crossref_primary_10_3389_fimmu_2020_02008 crossref_primary_10_1093_cid_ciaa1451 crossref_primary_10_1126_sciimmunol_abd2071 crossref_primary_10_1126_sciimmunol_abo0535 crossref_primary_10_1186_s12859_020_03760_7 crossref_primary_10_1016_j_jinf_2021_02_023 crossref_primary_10_1016_j_ijbiomac_2020_06_213 crossref_primary_10_1080_25765299_2020_1852731 crossref_primary_10_1080_21645515_2020_1787067 crossref_primary_10_1111_imm_13234 crossref_primary_10_1016_j_intimp_2020_106980 crossref_primary_10_3390_vaccines12040379 crossref_primary_10_1038_s41598_023_48581_9 crossref_primary_10_1016_j_immuni_2020_05_002 crossref_primary_10_3389_fimmu_2022_867577 crossref_primary_10_1038_s41598_021_93145_4 crossref_primary_10_1186_s13073_021_00847_5 crossref_primary_10_3389_fpubh_2025_1522733 crossref_primary_10_1016_j_pep_2023_106263 crossref_primary_10_1186_s13073_021_00910_1 crossref_primary_10_2174_2666958702101010216 crossref_primary_10_3390_diagnostics12112854 crossref_primary_10_1080_22221751_2021_1978823 crossref_primary_10_1007_s13337_023_00820_3 crossref_primary_10_1186_s12879_022_07064_4 crossref_primary_10_3390_vaccines8030444 crossref_primary_10_1016_j_intimp_2020_106738 crossref_primary_10_31631_2073_3046_2022_21_1_4_20 crossref_primary_10_3389_fgene_2021_602196 crossref_primary_10_3390_ijms21176258 crossref_primary_10_3906_biy_2006_1 crossref_primary_10_1096_fj_202001351 crossref_primary_10_1016_j_cell_2020_09_038 crossref_primary_10_3390_molecules28062735 crossref_primary_10_1016_j_bbrc_2021_05_073 crossref_primary_10_1016_j_prmcm_2022_100049 crossref_primary_10_1038_s41587_022_01474_0 crossref_primary_10_1128_JVI_01837_20 crossref_primary_10_1007_s40203_021_00103_z crossref_primary_10_1371_journal_pone_0262591 crossref_primary_10_1002_med_21756 crossref_primary_10_1371_journal_pone_0238089 crossref_primary_10_1080_07391102_2020_1838329 crossref_primary_10_3390_vaccines10101660 crossref_primary_10_1038_s41588_020_0700_8 crossref_primary_10_3389_fimmu_2022_1025500 crossref_primary_10_3389_fimmu_2021_692937 crossref_primary_10_3390_pathogens10060710 crossref_primary_10_17816_PED12663_76 crossref_primary_10_3390_jcm11020405 crossref_primary_10_1016_j_meegid_2021_105075 crossref_primary_10_1186_s12967_020_02515_5 crossref_primary_10_1007_s13337_023_00852_9 crossref_primary_10_1016_j_molimm_2022_10_016 crossref_primary_10_3390_v13020333 crossref_primary_10_3389_fmicb_2021_752739 crossref_primary_10_22159_ijpps_2022v14i11_46171 crossref_primary_10_3389_fimmu_2024_1321406 crossref_primary_10_3389_fcimb_2022_787411 crossref_primary_10_3389_fimmu_2020_587615 crossref_primary_10_3389_fimmu_2023_1091941 crossref_primary_10_1016_j_vaccine_2025_126787 crossref_primary_10_1016_j_heliyon_2021_e06836 crossref_primary_10_1038_s41564_020_00824_5 crossref_primary_10_1021_acsami_1c16930 crossref_primary_10_1042_BSR20211491 crossref_primary_10_4049_jimmunol_2001438 crossref_primary_10_1590_1678_4685_gmb_2020_0256 crossref_primary_10_1002_jmv_26254 crossref_primary_10_1021_acsomega_3c00944 crossref_primary_10_1002_ptr_6796 crossref_primary_10_1080_20477724_2020_1838190 crossref_primary_10_3390_ijms23052408 crossref_primary_10_1038_s41598_021_83730_y crossref_primary_10_3389_fimmu_2021_679841 crossref_primary_10_1038_s41598_021_84387_3 crossref_primary_10_1038_s41598_022_18152_5 crossref_primary_10_2174_1386207324666210510164743 crossref_primary_10_3389_fimmu_2021_674279 crossref_primary_10_1038_s43018_020_00122_3 crossref_primary_10_3390_v13081595 crossref_primary_10_4049_jimmunol_2001407 crossref_primary_10_1007_s11030_020_10134_x crossref_primary_10_3389_fimmu_2021_813300 crossref_primary_10_1021_acsptsci_4c00727 crossref_primary_10_1016_j_isci_2023_106335 crossref_primary_10_1039_D1NR00388G crossref_primary_10_1080_1744666X_2021_1847640 crossref_primary_10_3389_fped_2021_668484 crossref_primary_10_4049_jimmunol_2001400 crossref_primary_10_1093_bib_bbae183 crossref_primary_10_1021_acs_analchem_0c02060 crossref_primary_10_1099_jgv_0_001513 crossref_primary_10_1111_jcmm_16586 crossref_primary_10_3389_fmicb_2020_01858 crossref_primary_10_2174_1573406417666210806154129 crossref_primary_10_1016_j_jaci_2020_05_001 crossref_primary_10_1038_s41467_023_38751_8 crossref_primary_10_1002_eji_202048908 crossref_primary_10_1021_acsbiomedchemau_3c00010 crossref_primary_10_3389_fcimb_2024_1415885 crossref_primary_10_1080_22221751_2020_1776161 crossref_primary_10_3390_ijms24021701 crossref_primary_10_1093_cid_ciaa1537 crossref_primary_10_1038_s41467_021_22210_3 crossref_primary_10_17352_ojpg_000010 crossref_primary_10_1093_intimm_dxac006 crossref_primary_10_1186_s12916_022_02367_4 crossref_primary_10_3390_ijms23116225 crossref_primary_10_3390_molecules26206182 crossref_primary_10_1016_j_antiviral_2022_105343 crossref_primary_10_1038_s41541_020_00237_9 crossref_primary_10_1093_ofid_ofab144 crossref_primary_10_3390_biom14101217 crossref_primary_10_1016_j_clindermatol_2021_01_020 crossref_primary_10_3390_s23083946 crossref_primary_10_1371_journal_pone_0265644 crossref_primary_10_3389_fbinf_2021_709533 crossref_primary_10_3390_vaccines11030548 crossref_primary_10_1016_j_xcrm_2020_100092 crossref_primary_10_1016_j_xinn_2022_100221 crossref_primary_10_1038_s41598_021_02898_5 crossref_primary_10_1111_all_14360 crossref_primary_10_3389_fimmu_2023_1154058 crossref_primary_10_1016_j_cels_2020_06_009 crossref_primary_10_1016_j_cbi_2020_109226 crossref_primary_10_1016_j_lfs_2020_117970 crossref_primary_10_1016_j_heliyon_2020_e04865 crossref_primary_10_1111_all_14364 crossref_primary_10_1186_s12866_021_02401_0 crossref_primary_10_24075_brsmu_2020_045 crossref_primary_10_3390_vaccines9111337 crossref_primary_10_31829_10_31829_2641_7456_ahs2020_4_1__142 crossref_primary_10_1016_j_antiviral_2024_105991 crossref_primary_10_1016_j_arr_2022_101687 crossref_primary_10_3389_fmed_2020_00471 crossref_primary_10_1093_jac_dkaa444 crossref_primary_10_1007_s41061_021_00353_7 crossref_primary_10_1016_j_bios_2020_112274 crossref_primary_10_1016_j_cell_2021_05_046 crossref_primary_10_1021_acs_jproteome_1c00783 crossref_primary_10_1038_s41598_020_77466_4 crossref_primary_10_3390_v14122775 crossref_primary_10_1038_s41422_021_00519_4 crossref_primary_10_3390_molecules25215088 crossref_primary_10_1016_j_medntd_2020_100048 crossref_primary_10_1016_j_bj_2020_09_005 crossref_primary_10_1016_j_jim_2022_113216 crossref_primary_10_1186_s43042_022_00224_w crossref_primary_10_1016_j_jiph_2021_06_017 crossref_primary_10_1038_s41564_022_01106_y crossref_primary_10_1016_j_addr_2021_02_004 crossref_primary_10_1016_j_jiph_2020_12_025 crossref_primary_10_1038_s41541_024_00957_2 crossref_primary_10_1111_eci_13661 crossref_primary_10_1038_s41598_024_66558_0 crossref_primary_10_3389_fimmu_2022_929849 crossref_primary_10_3390_ijms25042031 crossref_primary_10_1126_sciimmunol_abg6461 crossref_primary_10_22328_2413_5747_2020_6_3_67_75 crossref_primary_10_3390_microorganisms10010153 crossref_primary_10_1016_j_chom_2022_11_003 crossref_primary_10_1016_j_imu_2020_100458 crossref_primary_10_1016_j_imu_2020_100338 crossref_primary_10_1093_bib_bbac056 crossref_primary_10_1371_journal_pone_0246173 crossref_primary_10_3389_fimmu_2022_911859 crossref_primary_10_1155_2021_9923518 crossref_primary_10_1128_spectrum_03410_23 crossref_primary_10_3389_fimmu_2025_1538871 crossref_primary_10_3390_jpm11060475 crossref_primary_10_3390_vaccines9050520 crossref_primary_10_1371_journal_pone_0262311 crossref_primary_10_3390_biom12020188 crossref_primary_10_3103_S0096392522040125 crossref_primary_10_1016_j_addr_2020_12_006 crossref_primary_10_1016_j_ebiom_2023_104563 crossref_primary_10_1007_s41664_021_00197_6 crossref_primary_10_3389_fimmu_2021_774491 crossref_primary_10_1007_s40203_022_00128_y crossref_primary_10_3390_plants10061213 crossref_primary_10_3390_ijms23137219 crossref_primary_10_1038_s41541_023_00795_8 crossref_primary_10_1002_jmv_26854 crossref_primary_10_1007_s11684_020_0786_5 crossref_primary_10_2471_BLT_20_253591 crossref_primary_10_33590_emj_20_00158 crossref_primary_10_1002_eji_202149556 crossref_primary_10_1016_j_antiviral_2024_105978 crossref_primary_10_1128_JVI_00647_20 crossref_primary_10_1371_journal_pcbi_1009726 crossref_primary_10_1016_j_vaccine_2021_01_011 crossref_primary_10_1093_ajcp_aqaa140 crossref_primary_10_1093_oxfimm_iqac003 crossref_primary_10_12873_411vique crossref_primary_10_1016_j_lfs_2020_118919 crossref_primary_10_1371_journal_ppat_1012339 crossref_primary_10_3390_pathogens10060737 crossref_primary_10_3390_vaccines12080919 crossref_primary_10_1021_acsinfecdis_1c00410 crossref_primary_10_1021_acs_jproteome_0c00553 crossref_primary_10_1007_s12033_021_00373_0 crossref_primary_10_1007_s00500_020_05452_z crossref_primary_10_2147_JIR_S277716 crossref_primary_10_1016_j_diagmicrobio_2020_115094 crossref_primary_10_1128_mBio_01991_20 crossref_primary_10_1002_jmv_26626 crossref_primary_10_1021_acssensors_0c01050 crossref_primary_10_3390_ijms21145145 crossref_primary_10_1126_sciadv_abf2467 crossref_primary_10_1016_j_isci_2022_105202 crossref_primary_10_1016_j_compbiomed_2023_107233 crossref_primary_10_1016_j_csbj_2023_09_044 crossref_primary_10_1038_s41467_021_22811_y crossref_primary_10_1016_j_lfs_2020_117836 crossref_primary_10_1038_s41598_020_78758_5 crossref_primary_10_1016_j_xcrm_2022_100651 crossref_primary_10_1080_21645515_2020_1842034 crossref_primary_10_1016_j_celrep_2021_109570 crossref_primary_10_1128_JVI_02284_20 crossref_primary_10_37349_ei_2021_00003 crossref_primary_10_1021_acs_jproteome_0c00405 crossref_primary_10_3389_fimmu_2021_729189 crossref_primary_10_3389_fimmu_2023_1100594 crossref_primary_10_3390_v16071006 crossref_primary_10_1098_rsob_210240 crossref_primary_10_3389_fimmu_2024_1386160 crossref_primary_10_1016_j_meegid_2021_104823 crossref_primary_10_1080_07391102_2023_2228919 crossref_primary_10_1093_infdis_jiaa531 crossref_primary_10_1016_j_bios_2020_112479 crossref_primary_10_1093_database_baad065 crossref_primary_10_1016_j_scitotenv_2020_142363 crossref_primary_10_1109_TAI_2024_3487149 crossref_primary_10_1002_hep4_1600 crossref_primary_10_1093_jleuko_qiae111 crossref_primary_10_1016_j_cels_2021_09_013 crossref_primary_10_1186_s12859_020_03782_1 crossref_primary_10_1093_milmed_usab031 crossref_primary_10_3390_diagnostics11111990 crossref_primary_10_3389_fmicb_2020_02086 crossref_primary_10_3389_fimmu_2021_693054 crossref_primary_10_3390_biomedicines10071464 crossref_primary_10_1038_s41423_021_00717_5 crossref_primary_10_1016_j_cell_2020_09_007 crossref_primary_10_1002_btm2_10566 crossref_primary_10_3390_pathogens9060501 crossref_primary_10_1002_iid3_748 crossref_primary_10_2174_2666796701999200629003417 crossref_primary_10_3389_fcvm_2020_616527 crossref_primary_10_1128_spectrum_00503_23 crossref_primary_10_1021_acssensors_2c01016 crossref_primary_10_3389_fimmu_2020_561851 crossref_primary_10_3389_fimmu_2020_618685 crossref_primary_10_1016_j_ebiom_2020_102885 crossref_primary_10_1016_j_ijbiomac_2020_12_020 crossref_primary_10_1071_SH23191 crossref_primary_10_1172_jci_insight_148855 crossref_primary_10_1515_biol_2021_0062 crossref_primary_10_1177_09544062221098538 crossref_primary_10_1172_jci_insight_155145 crossref_primary_10_1016_j_ijmmb_2021_01_003 crossref_primary_10_3389_fimmu_2021_732693 crossref_primary_10_3390_vaccines10020236 crossref_primary_10_1038_s41598_022_15225_3 crossref_primary_10_1186_s41231_021_00093_2 crossref_primary_10_1111_sji_13151 crossref_primary_10_1002_cpz1_934 crossref_primary_10_1016_j_virusres_2021_198508 crossref_primary_10_1016_j_ijbiomac_2021_08_026 crossref_primary_10_1073_pnas_2024202118 crossref_primary_10_3389_fgene_2021_630542 crossref_primary_10_4081_hr_2020_8630 crossref_primary_10_1186_s41232_022_00239_1 crossref_primary_10_3390_ijms222011211 crossref_primary_10_1002_jcla_24479 crossref_primary_10_1038_s41596_020_0358_9 crossref_primary_10_1016_j_drup_2020_100733 crossref_primary_10_1016_j_ab_2022_114680 crossref_primary_10_1016_j_jiph_2020_06_015 crossref_primary_10_1039_D1RA07364H crossref_primary_10_1080_14760584_2020_1825946 crossref_primary_10_1186_s12985_020_01437_4 crossref_primary_10_1016_j_meegid_2021_104712 crossref_primary_10_1038_s41577_022_00809_x crossref_primary_10_4049_immunohorizons_2400003 crossref_primary_10_3389_fimmu_2021_701501 crossref_primary_10_1128_JVI_00510_20 crossref_primary_10_1016_j_compbiolchem_2025_108389 crossref_primary_10_1155_2021_6693909 crossref_primary_10_1016_j_rinp_2021_103813 crossref_primary_10_1515_revneuro_2020_0108 crossref_primary_10_2174_1570163819666220117161308 crossref_primary_10_3390_immuno2020022 crossref_primary_10_3390_vaccines8030408 crossref_primary_10_1016_j_celrep_2021_110210 crossref_primary_10_1371_journal_pone_0257191 crossref_primary_10_1016_j_cmi_2020_09_051 crossref_primary_10_1016_j_jri_2021_103464 |
Cites_doi | 10.1016/j.vaccine.2006.01.058 10.1016/j.virol.2004.04.017 10.1016/j.jim.2015.03.022 10.1093/nar/gky1006 10.1016/j.antiviral.2009.09.004 10.1371/journal.pcbi.1002829 10.1093/nar/gkx346 10.4049/jimmunol.1302101 10.4049/jimmunol.1801090 10.1016/j.vaccine.2007.05.025 10.1093/intimm/dxn124 10.1016/j.immuni.2008.04.018 10.1093/nar/gkn254 10.4049/jimmunol.1403074 10.3390/v11010059 10.1093/bioinformatics/btu426 10.1038/nrmicro.2016.81 10.1073/pnas.1305227110 10.1021/cc0500607 10.1093/nar/gkr859 10.1111/j.1399-0039.2004.00314.x 10.1126/science.abb2507 10.1093/bioinformatics/bty463 10.1186/1471-2172-9-1 10.1016/j.chom.2020.02.001 10.1136/jcp.2005.029868 10.3389/fimmu.2017.01309 10.1016/j.bbrc.2006.03.152 10.1093/nar/gkz452 10.1371/journal.pone.0193382 10.3389/fimmu.2019.02125 10.1002/cpim.12 10.1034/j.1399-0039.2003.00062.x 10.1373/clinchem.2003.023184 10.4049/jimmunol.1700893 10.1021/acsinfecdis.6b00006 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. 2020 Elsevier Inc. 2020 Elsevier Inc. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. – notice: 2020 Elsevier Inc. 2020 Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.chom.2020.03.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1934-6069 |
EndPage | 680.e2 |
ExternalDocumentID | PMC7142693 32183941 10_1016_j_chom_2020_03_002 S1931312820301669 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: 75N93019C00001 – fundername: NIAID NIH HHS grantid: 75N93019C00076 – fundername: NIAID NIH HHS grantid: 75N93019C00065 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 5GY 62- 6I. 6J9 7-5 AACTN AAEDT AAEDW AAFTH AAKRW AALRI AAMRU AAVLU AAXUO ABJNI ABMAC ACGFO ACGFS ADBBV ADEZE ADVLN AEFWE AENEX AEXQZ AFTJW AGKMS AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE HVGLF IHE IXB JIG K97 M41 O-L O9- OK1 P2P ROL RPZ SES SSZ TR2 UNMZH 53G AAIKJ AAYWO AAYXX ABDGV ACVFH ADCNI AEUPX AFPUW AGCQF AGHFR AIGII AKBMS AKYEP APXCP CITATION HZ~ OZT RIG ZBA CGR CUY CVF ECM EIF NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c549t-14bd5ccfb01c110c0a41ebffa98bfee4fed5d318987fb9aa08719b262d9a1c1b3 |
IEDL.DBID | IXB |
ISSN | 1931-3128 1934-6069 |
IngestDate | Thu Aug 21 18:30:31 EDT 2025 Fri Jul 11 03:23:14 EDT 2025 Thu Apr 03 07:05:08 EDT 2025 Tue Jul 01 02:44:22 EDT 2025 Thu Apr 24 23:02:29 EDT 2025 Sun Apr 06 06:53:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | COVID-19 B cell epitope sequence conservation SARS-CoV-2 infectious disease SARS-CoV coronavirus T cell epitope |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c549t-14bd5ccfb01c110c0a41ebffa98bfee4fed5d318987fb9aa08719b262d9a1c1b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1931312820301669 |
PMID | 32183941 |
PQID | 2378900405 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7142693 proquest_miscellaneous_2378900405 pubmed_primary_32183941 crossref_citationtrail_10_1016_j_chom_2020_03_002 crossref_primary_10_1016_j_chom_2020_03_002 elsevier_sciencedirect_doi_10_1016_j_chom_2020_03_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-08 |
PublicationDateYYYYMMDD | 2020-04-08 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell host & microbe |
PublicationTitleAlternate | Cell Host Microbe |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Wang, Zhang, Kuwahara, Li, Liu, Li, Zhu, Liu, Xu, Xie (bib31) 2016; 2 Paul, Dillon, Arlehamn, Huang, Davis, McKinney, Scriba, Sidney, Peters, Sette (bib19) 2015; 194 Krieger, Vriend (bib38) 2014; 30 Chow, Ho, Tam, Wu, Cheung, Chan, Ng, Hui, Ng, Au, Lo (bib4) 2006; 59 da Silva Antunes, Paul, Sidney, Weiskopf, Dan, Phillips, Mallal, Crotty, Sette, Lindestam Arlehamn (bib5) 2018; 13 Guo, Petric, Campbell, McGeer (bib10) 2004; 324 Song, Xu, Bao, Zhang, Yu, Qu, Zhu, Zhao, Han, Qin (bib26) 2019; 11 Cheung, Cheng, Sin, Chan, Xie (bib2) 2007; 25 de Wit, van Doremalen, Falzarano, Munster (bib6) 2016; 14 Hu, Li, Kao, Kou, Wang, Zhang, Zhang, Hao, Tsui, Ni (bib11) 2005; 7 Paul, Weiskopf, Angelo, Sidney, Peters, Sette (bib18) 2013; 191 Tsao, Lin, Jan, Leng, Chu, Yang, Chen (bib28) 2006; 344 Kohyama, Ohno, Suda, Taneichi, Yokoyama, Mori, Kobayashi, Hayashi, Uchida, Matsui (bib14) 2009; 84 Wu, Peng, Huang, Ding, Wang, Niu, Meng, Zhu, Zhang, Wang (bib34) 2020 Dhanda, Vita, Ha, Grifoni, Peters, Sette (bib7) 2018; 34 Grifoni, Angelo, Lopez, O’Rourke, Sidney, Cerpas, Balmaseda, Silveira, Maestri, Costa (bib8) 2017; 8 Jurtz, Paul, Andreatta, Marcatili, Peters, Nielsen (bib13) 2017; 199 Jespersen, Peters, Nielsen, Marcatili (bib12) 2017; 45 Grifoni, Costa-Ramos, Pham, Tian, Rosales, Seumois, Sidney, de Silva, Premkumar, Collins (bib9) 2018; 201 Kringelum, Lundegaard, Lund, Nielsen (bib15) 2012; 8 Pickett, Sadat, Zhang, Noronha, Squires, Hunt, Liu, Kumar, Zaremba, Gu (bib22) 2012; 40 Sidney, Peters, Frahm, Brander, Sette (bib25) 2008; 9 Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib33) 2020 Dhanda, Mahajan, Paul, Yan, Kim, Jespersen, Jurtz, Andreatta, Greenbaum, Marcatili, Sette, Nielsen, Peters (bib37) 2019; 47 Wang, Wen, Li, Yin, Zhu, Wang, Yang, Qin, You, Li (bib30) 2003; 49 Zhang, Wang, Kim, Haste-Andersen, Beaver, Bourne, Bui, Buus, Frankild, Greenbaum (bib36) 2008; 36 Paul, Lindestam Arlehamn, Scriba, Dillon, Oseroff, Hinz, McKinney, Carrasco Pro, Sidney, Peters, Sette (bib20) 2015; 422 Middleton, Menchaca, Rood, Komerofsky (bib17) 2003; 61 Shichijo, Keicho, Long, Quy, Phi, Ha, Ban, Itoyama, Hu, Komatsu (bib24) 2004; 64 Paul, Sidney, Sette, Peters (bib21) 2016; 114 Vita, Mahajan, Overton, Dhanda, Martini, Cantrell, Wheeler, Sette, Peters (bib29) 2019; 47 Tian, Grifoni, Sette, Weiskopf (bib27) 2019; 10 Liu, Leng, Lien, Chi, Huang, Lin, Lian, Chen, Hsieh, Chong (bib16) 2006; 24 Weiskopf, Angelo, de Azeredo, Sidney, Greenbaum, Fernando, Broadwater, Kolla, De Silva, de Silva (bib32) 2013; 110 Yang, James, Roti, Huston, Gebe, Kwok (bib35) 2009; 21 Carrasco Pro, Sidney, Paul, Lindestam Arlehamn, Weiskopf, Peters, Sette (bib1) 2015; 2015 Cheung, Cheng, Sin, Chan, Xie (bib3) 2008; 14 Sette, Moutaftsi, Moyron-Quiroz, McCausland, Davies, Johnston, Peters, Rafii-El-Idrissi Benhnia, Hoffmann, Su (bib23) 2008; 28 Chow (10.1016/j.chom.2020.03.002_bib4) 2006; 59 Cheung (10.1016/j.chom.2020.03.002_bib2) 2007; 25 Paul (10.1016/j.chom.2020.03.002_bib18) 2013; 191 Grifoni (10.1016/j.chom.2020.03.002_bib8) 2017; 8 Jurtz (10.1016/j.chom.2020.03.002_bib13) 2017; 199 Paul (10.1016/j.chom.2020.03.002_bib19) 2015; 194 Tsao (10.1016/j.chom.2020.03.002_bib28) 2006; 344 Sidney (10.1016/j.chom.2020.03.002_bib25) 2008; 9 Song (10.1016/j.chom.2020.03.002_bib26) 2019; 11 Paul (10.1016/j.chom.2020.03.002_bib21) 2016; 114 Paul (10.1016/j.chom.2020.03.002_bib20) 2015; 422 Wang (10.1016/j.chom.2020.03.002_bib31) 2016; 2 Guo (10.1016/j.chom.2020.03.002_bib10) 2004; 324 Kringelum (10.1016/j.chom.2020.03.002_bib15) 2012; 8 Middleton (10.1016/j.chom.2020.03.002_bib17) 2003; 61 Tian (10.1016/j.chom.2020.03.002_bib27) 2019; 10 Yang (10.1016/j.chom.2020.03.002_bib35) 2009; 21 de Wit (10.1016/j.chom.2020.03.002_bib6) 2016; 14 Dhanda (10.1016/j.chom.2020.03.002_bib7) 2018; 34 Wu (10.1016/j.chom.2020.03.002_bib34) 2020 Jespersen (10.1016/j.chom.2020.03.002_bib12) 2017; 45 Kohyama (10.1016/j.chom.2020.03.002_bib14) 2009; 84 Hu (10.1016/j.chom.2020.03.002_bib11) 2005; 7 Vita (10.1016/j.chom.2020.03.002_bib29) 2019; 47 Weiskopf (10.1016/j.chom.2020.03.002_bib32) 2013; 110 Shichijo (10.1016/j.chom.2020.03.002_bib24) 2004; 64 Liu (10.1016/j.chom.2020.03.002_bib16) 2006; 24 Cheung (10.1016/j.chom.2020.03.002_bib3) 2008; 14 Pickett (10.1016/j.chom.2020.03.002_bib22) 2012; 40 Wang (10.1016/j.chom.2020.03.002_bib30) 2003; 49 da Silva Antunes (10.1016/j.chom.2020.03.002_bib5) 2018; 13 Carrasco Pro (10.1016/j.chom.2020.03.002_bib1) 2015; 2015 Grifoni (10.1016/j.chom.2020.03.002_bib9) 2018; 201 Krieger (10.1016/j.chom.2020.03.002_bib38) 2014; 30 Sette (10.1016/j.chom.2020.03.002_bib23) 2008; 28 Zhang (10.1016/j.chom.2020.03.002_bib36) 2008; 36 Wrapp (10.1016/j.chom.2020.03.002_bib33) 2020 Dhanda (10.1016/j.chom.2020.03.002_bib37) 2019; 47 32714104 - SSRN. 2020 Feb 25;:3541361 |
References_xml | – volume: 59 start-page: 468 year: 2006 end-page: 476 ident: bib4 article-title: Specific epitopes of the structural and hypothetical proteins elicit variable humoral responses in SARS patients publication-title: J. Clin. Pathol. – volume: 2015 start-page: 763461 year: 2015 ident: bib1 article-title: Automatic Generation of Validated Specific Epitope Sets publication-title: J. Immunol. Res. – volume: 30 start-page: 2981 year: 2014 end-page: 2982 ident: bib38 article-title: YASARA View - molecular graphics for all devices - from smartphones to workstations publication-title: Bionformatics – volume: 2 start-page: 361 year: 2016 end-page: 376 ident: bib31 article-title: Immunodominant SARS Coronavirus Epitopes in Humans Elicited both Enhancing and Neutralizing Effects on Infection in Non-human Primates publication-title: ACS Infect. Dis. – volume: 114 start-page: 18.19.1 year: 2016 end-page: 18.19.24 ident: bib21 article-title: TepiTool: A Pipeline for Computational Prediction of T Cell Epitope Candidates publication-title: Curr. Protoc. Immunol. – volume: 10 start-page: 2125 year: 2019 ident: bib27 article-title: Human T Cell Response to Dengue Virus Infection publication-title: Front. Immunol. – volume: 13 start-page: e0193382 year: 2018 ident: bib5 article-title: Correction: Definition of Human Epitopes Recognized in Tetanus Toxoid and Development of an Assay Strategy to Detect Ex Vivo Tetanus CD4+ T Cell Responses publication-title: PLoS One – volume: 47 start-page: D339 year: 2019 end-page: D343 ident: bib29 article-title: The Immune Epitope Database (IEDB): 2018 update publication-title: Nucleic Acids Res. – volume: 84 start-page: 168 year: 2009 end-page: 177 ident: bib14 article-title: Efficient induction of cytotoxic T lymphocytes specific for severe acute respiratory syndrome (SARS)-associated coronavirus by immunization with surface-linked liposomal peptides derived from a non-structural polyprotein 1a publication-title: Antiviral Res. – volume: 194 start-page: 6164 year: 2015 end-page: 6176 ident: bib19 article-title: A population response analysis approach to assign class II HLA-epitope restrictions publication-title: J. Immunol. – volume: 25 start-page: 6070 year: 2007 end-page: 6077 ident: bib2 article-title: Induction of T-cell response by a DNA vaccine encoding a novel HLA-A publication-title: Vaccine – volume: 201 start-page: 3487 year: 2018 end-page: 3491 ident: bib9 article-title: Cutting Edge: Transcriptional Profiling Reveals Multifunctional and Cytotoxic Antiviral Responses of Zika Virus-Specific CD8 publication-title: J. Immunol. – volume: 8 start-page: 1309 year: 2017 ident: bib8 article-title: Global Assessment of Dengue Virus-Specific CD4 publication-title: Front. Immunol. – volume: 8 start-page: e1002829 year: 2012 ident: bib15 article-title: Reliable B cell epitope predictions: impacts of method development and improved benchmarking publication-title: PLoS Comput. Biol. – volume: 28 start-page: 847 year: 2008 end-page: 858 ident: bib23 article-title: Selective CD4+ T cell help for antibody responses to a large viral pathogen: deterministic linkage of specificities publication-title: Immunity – volume: 324 start-page: 251 year: 2004 end-page: 256 ident: bib10 article-title: SARS corona virus peptides recognized by antibodies in the sera of convalescent cases publication-title: Virology – volume: 47 start-page: W502 year: 2019 end-page: W506 ident: bib37 article-title: IEDB-AR: immune epitope database-analysis resource in 2019 publication-title: Nucleic Acids Res. – volume: 40 start-page: D593 year: 2012 end-page: D598 ident: bib22 article-title: ViPR: an open bioinformatics database and analysis resource for virology research publication-title: Nucleic Acids Res. – volume: 14 start-page: 523 year: 2016 end-page: 534 ident: bib6 article-title: SARS and MERS: recent insights into emerging coronaviruses publication-title: Nat. Rev. Microbiol. – volume: 45 start-page: W24 year: 2017 end-page: W29 ident: bib12 article-title: BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes publication-title: Nucleic Acids Res. – volume: 64 start-page: 600 year: 2004 end-page: 607 ident: bib24 article-title: Assessment of synthetic peptides of severe acute respiratory syndrome coronavirus recognized by long-lasting immunity publication-title: Tissue Antigens – volume: 344 start-page: 63 year: 2006 end-page: 71 ident: bib28 article-title: HLA-A publication-title: Biochem. Biophys. Res. Commun. – volume: 11 year: 2019 ident: bib26 article-title: From SARS to MERS, Thrusting Coronaviruses into the Spotlight publication-title: Viruses – volume: 199 start-page: 3360 year: 2017 end-page: 3368 ident: bib13 article-title: NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data publication-title: J. Immunol. – volume: 191 start-page: 5831 year: 2013 end-page: 5839 ident: bib18 article-title: HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity publication-title: J. Immunol. – year: 2020 ident: bib34 article-title: Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China publication-title: Cell Host Microbe – volume: 49 start-page: 1989 year: 2003 end-page: 1996 ident: bib30 article-title: Assessment of immunoreactive synthetic peptides from the structural proteins of severe acute respiratory syndrome coronavirus publication-title: Clin. Chem. – volume: 24 start-page: 3100 year: 2006 end-page: 3108 ident: bib16 article-title: Immunological characterizations of the nucleocapsid protein based SARS vaccine candidates publication-title: Vaccine – volume: 110 start-page: E2046 year: 2013 end-page: E2053 ident: bib32 article-title: Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells publication-title: Proc. Natl. Acad. Sci. USA – year: 2020 ident: bib33 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science – volume: 7 start-page: 648 year: 2005 end-page: 656 ident: bib11 article-title: Screening and identification of linear B-cell epitopes and entry-blocking peptide of severe acute respiratory syndrome (SARS)-associated coronavirus using synthetic overlapping peptide library publication-title: J. Comb. Chem. – volume: 36 start-page: W513-8 year: 2008 ident: bib36 article-title: Immune epitope database analysis resource (IEDB-AR) publication-title: Nucleic Acids Res. – volume: 34 start-page: 3931 year: 2018 end-page: 3933 ident: bib7 article-title: ImmunomeBrowser: a tool to aggregate and visualize complex and heterogeneous epitopes in reference proteins publication-title: Bioinformatics – volume: 21 start-page: 63 year: 2009 end-page: 71 ident: bib35 article-title: Searching immunodominant epitopes prior to epidemic: HLA class II-restricted SARS-CoV spike protein epitopes in unexposed individuals publication-title: Int. Immunol. – volume: 422 start-page: 28 year: 2015 end-page: 34 ident: bib20 article-title: Development and validation of a broad scheme for prediction of HLA class II restricted T cell epitopes publication-title: J. Immunol. Methods – volume: 14 start-page: 27 year: 2008 end-page: 30 ident: bib3 article-title: Investigation of immunogenic T-cell epitopes in SARS virus nucleocapsid protein and their role in the prevention and treatment of SARS infection publication-title: Hong Kong Med. J. – volume: 61 start-page: 403 year: 2003 end-page: 407 ident: bib17 article-title: New allele frequency database: http://www.allelefrequencies.net publication-title: Tissue Antigens – volume: 9 start-page: 1 year: 2008 ident: bib25 article-title: HLA class I supertypes: a revised and updated classification publication-title: BMC Immunol. – volume: 24 start-page: 3100 year: 2006 ident: 10.1016/j.chom.2020.03.002_bib16 article-title: Immunological characterizations of the nucleocapsid protein based SARS vaccine candidates publication-title: Vaccine doi: 10.1016/j.vaccine.2006.01.058 – volume: 324 start-page: 251 year: 2004 ident: 10.1016/j.chom.2020.03.002_bib10 article-title: SARS corona virus peptides recognized by antibodies in the sera of convalescent cases publication-title: Virology doi: 10.1016/j.virol.2004.04.017 – volume: 422 start-page: 28 year: 2015 ident: 10.1016/j.chom.2020.03.002_bib20 article-title: Development and validation of a broad scheme for prediction of HLA class II restricted T cell epitopes publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2015.03.022 – volume: 47 start-page: D339 issue: D1 year: 2019 ident: 10.1016/j.chom.2020.03.002_bib29 article-title: The Immune Epitope Database (IEDB): 2018 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1006 – volume: 84 start-page: 168 year: 2009 ident: 10.1016/j.chom.2020.03.002_bib14 article-title: Efficient induction of cytotoxic T lymphocytes specific for severe acute respiratory syndrome (SARS)-associated coronavirus by immunization with surface-linked liposomal peptides derived from a non-structural polyprotein 1a publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2009.09.004 – volume: 8 start-page: e1002829 year: 2012 ident: 10.1016/j.chom.2020.03.002_bib15 article-title: Reliable B cell epitope predictions: impacts of method development and improved benchmarking publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002829 – volume: 45 start-page: W24 issue: W1 year: 2017 ident: 10.1016/j.chom.2020.03.002_bib12 article-title: BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx346 – volume: 191 start-page: 5831 year: 2013 ident: 10.1016/j.chom.2020.03.002_bib18 article-title: HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity publication-title: J. Immunol. doi: 10.4049/jimmunol.1302101 – volume: 201 start-page: 3487 year: 2018 ident: 10.1016/j.chom.2020.03.002_bib9 article-title: Cutting Edge: Transcriptional Profiling Reveals Multifunctional and Cytotoxic Antiviral Responses of Zika Virus-Specific CD8+ T Cells publication-title: J. Immunol. doi: 10.4049/jimmunol.1801090 – volume: 25 start-page: 6070 year: 2007 ident: 10.1016/j.chom.2020.03.002_bib2 article-title: Induction of T-cell response by a DNA vaccine encoding a novel HLA-A∗0201 severe acute respiratory syndrome coronavirus epitope publication-title: Vaccine doi: 10.1016/j.vaccine.2007.05.025 – volume: 21 start-page: 63 year: 2009 ident: 10.1016/j.chom.2020.03.002_bib35 article-title: Searching immunodominant epitopes prior to epidemic: HLA class II-restricted SARS-CoV spike protein epitopes in unexposed individuals publication-title: Int. Immunol. doi: 10.1093/intimm/dxn124 – volume: 28 start-page: 847 year: 2008 ident: 10.1016/j.chom.2020.03.002_bib23 article-title: Selective CD4+ T cell help for antibody responses to a large viral pathogen: deterministic linkage of specificities publication-title: Immunity doi: 10.1016/j.immuni.2008.04.018 – volume: 36 start-page: W513-8 year: 2008 ident: 10.1016/j.chom.2020.03.002_bib36 article-title: Immune epitope database analysis resource (IEDB-AR) publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn254 – volume: 194 start-page: 6164 year: 2015 ident: 10.1016/j.chom.2020.03.002_bib19 article-title: A population response analysis approach to assign class II HLA-epitope restrictions publication-title: J. Immunol. doi: 10.4049/jimmunol.1403074 – volume: 11 year: 2019 ident: 10.1016/j.chom.2020.03.002_bib26 article-title: From SARS to MERS, Thrusting Coronaviruses into the Spotlight publication-title: Viruses doi: 10.3390/v11010059 – volume: 14 start-page: 27 issue: Suppl 4 year: 2008 ident: 10.1016/j.chom.2020.03.002_bib3 article-title: Investigation of immunogenic T-cell epitopes in SARS virus nucleocapsid protein and their role in the prevention and treatment of SARS infection publication-title: Hong Kong Med. J. – volume: 30 start-page: 2981 year: 2014 ident: 10.1016/j.chom.2020.03.002_bib38 article-title: YASARA View - molecular graphics for all devices - from smartphones to workstations publication-title: Bionformatics doi: 10.1093/bioinformatics/btu426 – volume: 14 start-page: 523 year: 2016 ident: 10.1016/j.chom.2020.03.002_bib6 article-title: SARS and MERS: recent insights into emerging coronaviruses publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2016.81 – volume: 110 start-page: E2046 year: 2013 ident: 10.1016/j.chom.2020.03.002_bib32 article-title: Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1305227110 – volume: 7 start-page: 648 year: 2005 ident: 10.1016/j.chom.2020.03.002_bib11 article-title: Screening and identification of linear B-cell epitopes and entry-blocking peptide of severe acute respiratory syndrome (SARS)-associated coronavirus using synthetic overlapping peptide library publication-title: J. Comb. Chem. doi: 10.1021/cc0500607 – volume: 40 start-page: D593 year: 2012 ident: 10.1016/j.chom.2020.03.002_bib22 article-title: ViPR: an open bioinformatics database and analysis resource for virology research publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr859 – volume: 2015 start-page: 763461 year: 2015 ident: 10.1016/j.chom.2020.03.002_bib1 article-title: Automatic Generation of Validated Specific Epitope Sets publication-title: J. Immunol. Res. – volume: 64 start-page: 600 year: 2004 ident: 10.1016/j.chom.2020.03.002_bib24 article-title: Assessment of synthetic peptides of severe acute respiratory syndrome coronavirus recognized by long-lasting immunity publication-title: Tissue Antigens doi: 10.1111/j.1399-0039.2004.00314.x – year: 2020 ident: 10.1016/j.chom.2020.03.002_bib33 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science doi: 10.1126/science.abb2507 – volume: 34 start-page: 3931 year: 2018 ident: 10.1016/j.chom.2020.03.002_bib7 article-title: ImmunomeBrowser: a tool to aggregate and visualize complex and heterogeneous epitopes in reference proteins publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty463 – volume: 9 start-page: 1 year: 2008 ident: 10.1016/j.chom.2020.03.002_bib25 article-title: HLA class I supertypes: a revised and updated classification publication-title: BMC Immunol. doi: 10.1186/1471-2172-9-1 – year: 2020 ident: 10.1016/j.chom.2020.03.002_bib34 article-title: Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.02.001 – volume: 59 start-page: 468 year: 2006 ident: 10.1016/j.chom.2020.03.002_bib4 article-title: Specific epitopes of the structural and hypothetical proteins elicit variable humoral responses in SARS patients publication-title: J. Clin. Pathol. doi: 10.1136/jcp.2005.029868 – volume: 8 start-page: 1309 year: 2017 ident: 10.1016/j.chom.2020.03.002_bib8 article-title: Global Assessment of Dengue Virus-Specific CD4+ T Cell Responses in Dengue-Endemic Areas publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.01309 – volume: 344 start-page: 63 year: 2006 ident: 10.1016/j.chom.2020.03.002_bib28 article-title: HLA-A∗0201 T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus nucleocapsid and spike proteins publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2006.03.152 – volume: 47 start-page: W502 year: 2019 ident: 10.1016/j.chom.2020.03.002_bib37 article-title: IEDB-AR: immune epitope database-analysis resource in 2019 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz452 – volume: 13 start-page: e0193382 year: 2018 ident: 10.1016/j.chom.2020.03.002_bib5 article-title: Correction: Definition of Human Epitopes Recognized in Tetanus Toxoid and Development of an Assay Strategy to Detect Ex Vivo Tetanus CD4+ T Cell Responses publication-title: PLoS One doi: 10.1371/journal.pone.0193382 – volume: 10 start-page: 2125 year: 2019 ident: 10.1016/j.chom.2020.03.002_bib27 article-title: Human T Cell Response to Dengue Virus Infection publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.02125 – volume: 114 start-page: 18.19.1 year: 2016 ident: 10.1016/j.chom.2020.03.002_bib21 article-title: TepiTool: A Pipeline for Computational Prediction of T Cell Epitope Candidates publication-title: Curr. Protoc. Immunol. doi: 10.1002/cpim.12 – volume: 61 start-page: 403 year: 2003 ident: 10.1016/j.chom.2020.03.002_bib17 article-title: New allele frequency database: http://www.allelefrequencies.net publication-title: Tissue Antigens doi: 10.1034/j.1399-0039.2003.00062.x – volume: 49 start-page: 1989 year: 2003 ident: 10.1016/j.chom.2020.03.002_bib30 article-title: Assessment of immunoreactive synthetic peptides from the structural proteins of severe acute respiratory syndrome coronavirus publication-title: Clin. Chem. doi: 10.1373/clinchem.2003.023184 – volume: 199 start-page: 3360 year: 2017 ident: 10.1016/j.chom.2020.03.002_bib13 article-title: NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data publication-title: J. Immunol. doi: 10.4049/jimmunol.1700893 – volume: 2 start-page: 361 year: 2016 ident: 10.1016/j.chom.2020.03.002_bib31 article-title: Immunodominant SARS Coronavirus Epitopes in Humans Elicited both Enhancing and Neutralizing Effects on Infection in Non-human Primates publication-title: ACS Infect. Dis. doi: 10.1021/acsinfecdis.6b00006 – reference: 32714104 - SSRN. 2020 Feb 25;:3541361 |
SSID | ssj0055071 |
Score | 2.7080681 |
Snippet | Effective countermeasures against the recent emergence and rapid expansion of the 2019 novel coronavirus (SARS-CoV-2) require the development of data and tools... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 671 |
SubjectTerms | B cell epitope Betacoronavirus - genetics Betacoronavirus - immunology Computational Biology coronavirus Coronavirus Infections - immunology Coronavirus Infections - virology COVID-19 Databases, Protein Epitopes, B-Lymphocyte - genetics Epitopes, B-Lymphocyte - immunology Epitopes, T-Lymphocyte - genetics Epitopes, T-Lymphocyte - immunology Humans infectious disease Pandemics Pneumonia, Viral - immunology Pneumonia, Viral - virology SARS-CoV SARS-CoV-2 sequence conservation Sequence Homology T cell epitope |
Title | A Sequence Homology and Bioinformatic Approach Can Predict Candidate Targets for Immune Responses to SARS-CoV-2 |
URI | https://dx.doi.org/10.1016/j.chom.2020.03.002 https://www.ncbi.nlm.nih.gov/pubmed/32183941 https://www.proquest.com/docview/2378900405 https://pubmed.ncbi.nlm.nih.gov/PMC7142693 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA8iFHwptdr2-iEp-CbLbb724_F6KGdLRTwt9xay2YSetLvirQ_-953ZZA9P0Ye-7ccMhEwy80vmi5BDYQVPFc8TmSuFLcxAD5auTFyuuPKpF6zGq4GfZ9nsSn5fqMUWmQ65MBhWGXV_0Om9to5fxnE2xzfL5XgO0IMJUK8cUX2WYRKfkEWfxLf4NmhjLNfFgmeZJUgdE2dCjBf2I4EzIk9DoVP-nHF6Cj4fx1A-MEonb8jriCbpJAx4l2y55i15FfpL3u-RdkLnMVSaztq__VdqmpoCRayYCox0EuuK06lp6Pktum46fK6XeB1AL_tg8RUFenqK6SSOXoTIWreiXUvnk4t5Mm1_JXyfXJ0cX05nSeywkFg4F3YJk1WtrPVVyizgAJsayVzlvSmLyjsnvatVDbu-LHJflcakcLwqK57xujTAUYl3ZLtpG_eBUANArDaAGEoJVp9bk8nCG5MpbtF360aEDVOrbSw_jl0w_ughzuxaozg0ikOnQoM4RuRozXMTim-8SK0GiemNJaTBOrzI93UQr4a9hQ4T07j2bqW5wDRhUHNqRN4Hca_HIXpsKdmI5BsLYU2Adbs3_zTL33397pxh_rD4-J_j_UR28K0PHyo-k-3u9s59AWTUVQdwJjj9cdBvgH8ZPQyJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tixBcEG_K00jcUNTYjpP6WCpWLeyu0LaLerMcxxFFkKy22QP_npnYqSiIPXCLnBnJ8tgznz0vgLfSSZEqUSRZoRS1MEM9qL1OfKGEqtNa8oqeBk5O8_l59nGt1gcwG3JhKKwy6v6g03ttHUfGcTXHF5vNeInQg0tUr4JQfZ7rG3AT0UBB_RsW6_eDOqZ6XTy4lnlC5DFzJgR5UUMSvCSKNFQ6Ff-yTn-jzz-DKH-zSkf34G6Ek2waZnwfDnzzAG6FBpM_H0I7ZcsYK83m7Y9-lNmmYkgRS6YiI5vGwuJsZhv2-ZJ8Nx19Vxt6D2CrPlp8y5CeLSifxLOzEFrrt6xr2XJ6tkxm7ZdEPILzow-r2TyJLRYShxfDLuFZWSnn6jLlDoGAS23GfVnXVk_K2vus9pWq8NjrSVGX2toU71e6FLmotEWOUj6Gw6Zt_FNgFpFYZREy6AzNvnA2zya1tbkSjpy3fgR8WFrjYv1xaoPx3QyBZt8MicOQOEwqDYpjBO92PBeh-sa11GqQmNnbQwbNw7V8bwbxGjxc5DGxjW-vtkZIyhNGPadG8CSIezcP2YPLjI-g2NsIOwIq3L3_p9l87Qt4F5wSiOWz_5zva7g9X50cm-PF6afncIf-9LFEkxdw2F1e-ZcIk7ryVX8MfgFB5Q6v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sequence+Homology+and+Bioinformatic+Approach+Can+Predict+Candidate+Targets+for+Immune+Responses+to+SARS-CoV-2&rft.jtitle=Cell+host+%26+microbe&rft.au=Grifoni%2C+Alba&rft.au=Sidney%2C+John&rft.au=Zhang%2C+Yun&rft.au=Scheuermann%2C+Richard+H&rft.date=2020-04-08&rft.eissn=1934-6069&rft.volume=27&rft.issue=4&rft.spage=671&rft_id=info:doi/10.1016%2Fj.chom.2020.03.002&rft_id=info%3Apmid%2F32183941&rft.externalDocID=32183941 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon |