Linking basin‐scale connectivity, oceanography and population dynamics for the conservation and management of marine ecosystems

AIM: Assessing the spatial structure and dynamics of marine populations is still a major challenge in ecology. The need to manage marine resources from ecosystem and large‐scale perspectives is recognized, but our partial understanding of oceanic connectivity limits the implementation of globally pe...

Full description

Saved in:
Bibliographic Details
Published inGlobal ecology and biogeography Vol. 25; no. 5; pp. 503 - 515
Main Authors Dubois, Mélodie, Rossi, Vincent, Ser‐Giacomi, Enrico, Arnaud‐Haond, Sophie, López, Cristóbal, Hernández‐García, Emilio
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Science 01.05.2016
Blackwell Publishing Ltd
John Wiley & Sons Ltd
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:AIM: Assessing the spatial structure and dynamics of marine populations is still a major challenge in ecology. The need to manage marine resources from ecosystem and large‐scale perspectives is recognized, but our partial understanding of oceanic connectivity limits the implementation of globally pertinent conservation planning. Based on a biophysical model for the entire Mediterranean Sea, this study takes an ecosystem approach to connectivity and provides a systematic characterization of broad‐scale larval dispersal patterns. It builds on our knowledge of population dynamics and discusses the ecological and management implications. LOCATION: The semi‐enclosed Mediterranean Sea and its marine ecosystems are used as a case study to investigate broad‐scale connectivity patterns and to relate them to oceanography and population dynamics. METHODS: A flow network is constructed by evenly subdividing the basin into sub‐regions which are interconnected through the transport of larvae by ocean currents. It allows for the computation of various connectivity metrics required to evaluate larval retention and exchange. RESULTS: Our basin‐scale model predicts that retention processes are weak in the open ocean while they are significant in the coastal ocean and are favoured along certain coastlines due to specific oceanographic features. Moreover, we show that wind‐driven divergent (convergent, respectively) oceanic regions are systematically characterized by larval sources (sinks, respectively). Finally, although these connectivity metrics have often been studied separately in the literature, we demonstrate they are interrelated under particular conditions. Their integrated analysis facilitates the appraisal of population dynamics, informing both genetic and demographic connectivities. MAIN CONCLUSIONS: This modelling framework helps ecologists and geneticists to formulate improved hypotheses of population structures and gene flow patterns and to design their sampling strategy accordingly. It is also useful in the implementation and assessment of future protection strategies, such as coastal and offshore marine reserves, by accounting for large‐scale dispersal patterns, a missing component of current ecosystem management.
Bibliography:http://dx.doi.org/10.1111/geb.12431
Appendix 2 Connectivity proxies distribution and sensitivity analysis.Appendix 3 Additional figures and table.
ECs Marie-Curie ITN - No. FP7-PEOPLE-2011-ITN
istex:2B4699279EC076F786AC16ECB2F2A22185B06526
MISTRALS ENVI-Med
ark:/67375/WNG-J5SNF3CF-8
ArticleID:GEB12431
MINECO/FEDER - No. CTM2012-39025-C02-01
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1466-822X
1466-8238
DOI:10.1111/geb.12431