Neurons Produce a Neuronal Cell Surface-Associated Chondroitin Sulfate Proteoglycan
Monoclonal antibody Cat-315 recognizes a chondroitin sulfate proteoglycan (CSPG) expressed on the surface of subsets of neurons in many areas of the mammalian CNS (). The cell type-specific expression exhibited by the Cat-315 CSPG and other perineuronal net CSPGs imparts a distinct molecular surface...
Saved in:
Published in | The Journal of neuroscience Vol. 18; no. 1; pp. 174 - 183 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
01.01.1998
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Monoclonal antibody Cat-315 recognizes a chondroitin sulfate proteoglycan (CSPG) expressed on the surface of subsets of neurons in many areas of the mammalian CNS (). The cell type-specific expression exhibited by the Cat-315 CSPG and other perineuronal net CSPGs imparts a distinct molecular surface identity to a neuron (Celio and Blumcke, 1994; Lander et al., 1997). The cell type(s) producing these surface-associated proteins and yielding this cellular diversity has remained in question. The expression of the Cat-315 CSPG in primary rat cortical cultures has permitted an examination of the cellular source of the Cat-315 antigen, as well as a determination of its spatial relationship to the neuronal surface. Live-cell labeling of primary neuronal cultures demonstrates that the Cat-315 CSPG is on the extracellular surface of neurons. Furthermore, extraction experiments demonstrate that the Cat-315 CSPG lacks a transmembrane domain and that the entire molecule is extracellular and, therefore, can be considered a constituent of brain extracellular matrix. Several lines of evidence indicate that neurons with cell surface staining produce the Cat-315 CSPG. First, neurons with cell surface staining also show intracellular Cat-315 immunoreactivity. Second, beta-xyloside or monensin, reagents that inhibit the synthesis and transport of CSPGs, increase intracellular Cat-315 immunoreactivity within neurons that express cell surface Cat-315 immunoreactivity. Third, double labeling with Cat-315 and a polyclonal antibody for the Golgi complex demonstrates a precise colocalization of the intracellular Cat-315 immunoreactivity with the Golgi. Together, these observations demonstrate that neurons contribute to the extracellular matrix of brain and that the Cat-315 CSPG is produced by the neurons that carry Cat-315 cell surface immunoreactivity. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/jneurosci.18-01-00174.1998 |