Phenolic Profiles and Bioactivities of Ten Original Lineage Beans in Thailand

Legumes and pulses are important food components with various phytochemicals and health benefits. However, the health-related bioactivities of some underutilized species remain uninvestigated. To breed a new bean lineage with particular health-related properties, this study investigated phenolics (s...

Full description

Saved in:
Bibliographic Details
Published inFoods Vol. 11; no. 23; p. 3905
Main Authors Chupeerach, Chaowanee, Temviriyanukul, Piya, Thangsiri, Sirinapa, Inthachat, Woorawee, Sahasakul, Yuraporn, Aursalung, Amornrat, Wongchang, Pitthaya, Sangkasa-Ad, Parichart, Wongpia, Aphinya, Polpanit, Auytin, Nuchuchua, Onanong, Suttisansanee, Uthaiwan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Legumes and pulses are important food components with various phytochemicals and health benefits. However, the health-related bioactivities of some underutilized species remain uninvestigated. To breed a new bean lineage with particular health-related properties, this study investigated phenolics (specifically, isoflavones) and the in vitro inhibitory activities of the enzyme relevant to some non-communicable diseases in underutilized cultivars of (lima beans), compared to the commonly consumed (red kidney bean) and beans in the and genera. The results indicated that soybeans in the genus contained the highest isoflavone contents, especially glycitein (1825-2633 mg/100 g bean) and daidzein (1153-6471 mg/100 g bean), leading to potentially higher enzyme inhibitory activities (25-26% inhibition against α-amylase, 54-60% inhibition against α-glucosidase, 42-46% inhibition against dipeptidyl peptidase IV, 12-19% inhibition against acetylcholinesterase and 20-23% inhibition against butyrylcholinesterase) than those from other genera. Interestingly, lima beans with low isoflavone content (up to 2 mg/100 g bean) still possessed high inhibitory activities against lipase (12-21% inhibition) and β-secretase (50-58% inhibition), suggesting that bioactive compounds other than the isoflavones might be responsible for these activities. Isoflavone contents and enzyme inhibitory activities in beans were diverse, depending on the particular cultivars. The information gained from this study can be used for further investigation of bioactive components and in-depth health properties, as well as for future breeding of a new lineage of bean with specific health potentials.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2304-8158
2304-8158
DOI:10.3390/foods11233905