Dual projections of tuberomammillary neurons to whisker-related, sensory and motor regions of the rat

Abstract The primary goal of this study was to examine in the rat whether neurons in the tuberomammillary nucleus (TMN) provide axon collaterals to whisker-related, sensorimotor regions at cortical and brainstem levels, using two different retrograde tracers. When injections were made at primary sen...

Full description

Saved in:
Bibliographic Details
Published inBrain research Vol. 1354; pp. 64 - 73
Main Authors Hong, Eun Y, Beak, Suk K, Lee, Hyun S
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.10.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract The primary goal of this study was to examine in the rat whether neurons in the tuberomammillary nucleus (TMN) provide axon collaterals to whisker-related, sensorimotor regions at cortical and brainstem levels, using two different retrograde tracers. When injections were made at primary sensory (S1) barrel field/primary whisker motor (M1) cortices, dual-projecting TMN neurons were observed mainly in the ventrolateral subdivision; the projection was almost exclusively ipsilateral. On the other hand, following injections of tracers into whisker-related, principal sensory trigeminal (Pr5)/lateral facial motor (Mo7) nuclei, dual-projecting cells were observed mainly in the dorsomedial subdivision; the projection was bilateral with a slight contralateral dominance. Taken together, the present observation demonstrated that each subdivision of the TMN possessed a differential functional organization with respect to its collateral projection to whisker-related sensorimotor targets, suggesting that the histaminergic projection might play a modulatory role in vibrissal sensorimotor integration, which allows the guidance of behavioral action essential for the survival of the animal.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0006-8993
1872-6240
DOI:10.1016/j.brainres.2010.07.093