Structural Elements of Metal Selectivity in Metal Sensor Proteins

Staphylococcus aureus CzrA and Mycobacterium tuberculosis NmtR are homologous zinc/cobalt-responsive and nickel/cobalt-responsive transcriptional repressors in vivo, respectively, and members of the ArsR/SmtB superfamily of prokaryotic metal sensor proteins. We show here that Zn(II) is the most pote...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 100; no. 7; pp. 3713 - 3718
Main Authors Pennella, Mario A., Shokes, Jacob E., Cosper, Nathaniel J., Scott, Robert A., Giedroc, David P.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 01.04.2003
National Acad Sciences
The National Academy of Sciences
SeriesBioinorganic Chemistry Special Feature
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Staphylococcus aureus CzrA and Mycobacterium tuberculosis NmtR are homologous zinc/cobalt-responsive and nickel/cobalt-responsive transcriptional repressors in vivo, respectively, and members of the ArsR/SmtB superfamily of prokaryotic metal sensor proteins. We show here that Zn(II) is the most potent negative allosteric regulator of czr operator/promoter binding in vitro with the trend Zn(II)>Co(II)≫Ni(II), whereas the opposite holds for the binding of NmtR to the nmt operator/promoter, Ni(II)>Co(II)>Zn(II). Characterization of the metal coordination complexes of CzrA and NmtR by UV/visible and x-ray absorption spectroscopies reveals that metals that form four-coordinate tetrahedral complexes with CzrA [Zn(II) and Co(II)] are potent regulators of DNA binding, whereas metals that form five- or six-coordinate complexes with NmtR [Ni(II) and Co(II)] are the strongest allosteric regulators in this system. Strikingly, the Zn(II) coordination complexes of CzrA and NmtR cannot be distinguished from one another by x-ray absorption spectroscopy, with the best fit a His-3-carboxylate complex in both cases. Inspection of the primary structures of CzrA and NmtR, coupled with previous functional data, suggests that three conserved His and one Asp from the C-terminal α5 helix donate ligands to create a four-coordinate complex in both CzrA and NmtR, with NmtR uniquely capable of expanding its coordination number in the Ni(II) and Co(II) complexes by recruiting additional His ligands from a C-terminal extension of the α5 helix.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
To whom correspondence should be addressed. E-mail: rscott@uga.edu or giedroc@tamu.edu.
Edited by Kenneth N. Raymond, University of California, Berkeley, CA, and approved January 21, 2003
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0636943100