A novel inhibitor of advanced glycation and endoplasmic reticulum stress reduces infarct volume in rat focal cerebral ischemia

Abstract We have developed a novel, non-toxic inhibitor of advanced glycation and oxidative stress, TM2002, devoid of effect on blood pressure. In transient focal ischemia, TM2002 significantly decreased infarct volume compared with vehicle (79.5 ± 18.7 vs. 183.3 ± 22.9 mm3 , p < 0.01). In perman...

Full description

Saved in:
Bibliographic Details
Published inBrain research Vol. 1183; pp. 124 - 137
Main Authors Takizawa, Shunya, Izuhara, Yuko, Kitao, Yasuko, Hori, Osamu, Ogawa, Satoshi, Morita, Yuko, Takagi, Shigeharu, van Ypersele de Strihou, Charles, Miyata, Toshio
Format Journal Article
LanguageEnglish
Published London Elsevier B.V 05.12.2007
Amsterdam Elsevier
New York, NY
Subjects
TTC
CBF
HO
MCA
ER
ARB
Rat
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract We have developed a novel, non-toxic inhibitor of advanced glycation and oxidative stress, TM2002, devoid of effect on blood pressure. In transient focal ischemia, TM2002 significantly decreased infarct volume compared with vehicle (79.5 ± 18.7 vs. 183.3 ± 22.9 mm3 , p < 0.01). In permanent focal ischemia, TM2002 (2.79, 5.58, and 11.16 mg/kg twice a day) dose-dependently reduced infarct volume (242.1 ± 32.3, 201.3 ± 15.1, and 171.3 ± 15.2 mm3 , respectively), and improved neurological deficits. Reduction of infarct volume is demonstrable, provided that TM2002 was administered within 1.5 h after the occlusion. To unravel TM2002's mechanism of action, we examined its in vitro effect on endoplasmic reticulum (ER) stress, using aortic smooth muscle cells isolated from ORP 150+/− mice and F9 Herp null mutated cells. Cell death induced by ER stress (tunicamycin or hypoxia) was dose-dependently prevented by TM2002. In vivo immunohistochemical study demonstrated a significant reduction of ORP- and TUNEL-positive apoptotic cells, especially in the penumbra. Inhibition of advanced glycation and oxidative stress was confirmed by a significantly reduced number of cells positive for advanced glycation end products and heme oxygenase-1. TM2002 reduced the levels of protein carbonyl formation in ischemic caudate. The efficacy of TM2002 is equivalent to that of a known neuroprotective agent, NXY-059. In conclusion, TM2002 significantly ameliorates ischemic cerebral damage through reduction of ER stress, advanced glycation, and oxidative stress, independently of blood pressure lowering.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-8993
1872-6240
DOI:10.1016/j.brainres.2007.07.006