Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies

Identifying genes that display spatial expression patterns in spatially resolved transcriptomic studies is an important first step toward characterizing the spatial transcriptomic landscape of complex tissues. Here we present a statistical method, SPARK, for identifying spatial expression patterns o...

Full description

Saved in:
Bibliographic Details
Published inNature methods Vol. 17; no. 2; pp. 193 - 200
Main Authors Sun, Shiquan, Zhu, Jiaqiang, Zhou, Xiang
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.02.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Identifying genes that display spatial expression patterns in spatially resolved transcriptomic studies is an important first step toward characterizing the spatial transcriptomic landscape of complex tissues. Here we present a statistical method, SPARK, for identifying spatial expression patterns of genes in data generated from various spatially resolved transcriptomic techniques. SPARK directly models spatial count data through generalized linear spatial models. It relies on recently developed statistical formulas for hypothesis testing, providing effective control of type I errors and yielding high statistical power. With a computationally efficient algorithm, which is based on penalized quasi-likelihood, SPARK is also scalable to datasets with tens of thousands of genes measured on tens of thousands of samples. Analyzing four published spatially resolved transcriptomic datasets using SPARK, we show it can be up to ten times more powerful than existing methods and disclose biological discoveries that otherwise cannot be revealed by existing approaches. A statistical method called SPARK for analyzing spatially resolved transcriptomic data can efficiently identify spatially expressed genes with effective control of type I errors and high statistical power.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1548-7091
1548-7105
1548-7105
DOI:10.1038/s41592-019-0701-7