MicroRNA-21 Silencing in Diabetic Nephropathy: Insights on Therapeutic Strategies

In diabetes, possibly the most significant site of microvascular damage is the kidney. Due to diabetes and/or other co-morbidities, such as hypertension and age-related nephron loss, a significant number of people with diabetes suffer from kidney diseases. Improved diabetic care can reduce the preva...

Full description

Saved in:
Bibliographic Details
Published inBiomedicines Vol. 11; no. 9; p. 2583
Main Authors Dhas, Yogita, Arshad, Numair, Biswas, Nupur, Jones, Lawrence D, Ashili, Shashaanka
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In diabetes, possibly the most significant site of microvascular damage is the kidney. Due to diabetes and/or other co-morbidities, such as hypertension and age-related nephron loss, a significant number of people with diabetes suffer from kidney diseases. Improved diabetic care can reduce the prevalence of diabetic nephropathy (DN); however, innovative treatment approaches are still required. MicroRNA-21 (miR-21) is one of the most studied multipotent microRNAs (miRNAs), and it has been linked to renal fibrosis and exhibits significantly altered expression in DN. Targeting miR-21 offers an advantage in DN. Currently, miR-21 is being pharmacologically silenced through various methods, all of which are in early development. In this review, we summarize the role of miR-21 in the molecular pathogenesis of DN and several therapeutic strategies to use miR-21 as a therapeutic target in DN. The existing experimental interventions offer a way to rectify the lower miRNA levels as well as to reduce the higher levels. Synthetic miRNAs also referred to as miR-mimics, can compensate for abnormally low miRNA levels. Furthermore, strategies like oligonucleotides can be used to alter the miRNA levels. It is reasonable to target miR-21 for improved results because it directly contributes to the pathological processes of kidney diseases, including DN.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:2227-9059
2227-9059
DOI:10.3390/biomedicines11092583