Preparation of Biodegradable Polyethylene Glycol Dimethacrylate Hydrogels via Thiol-ene Chemistry

Through the control of the molecular weight, water content and monomer concentration, polyethylene glycol dimethacrylate (PEGDMA) based hydrogels have been adapted for numerous applications, including as structural scaffolds, drug delivery vehicles and cell carriers. However, due to the low biodegra...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 11; no. 8; p. 1339
Main Authors Burke, Gavin, Cao, Zhi, Devine, Declan M, Major, Ian
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 13.08.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Through the control of the molecular weight, water content and monomer concentration, polyethylene glycol dimethacrylate (PEGDMA) based hydrogels have been adapted for numerous applications, including as structural scaffolds, drug delivery vehicles and cell carriers. However, due to the low biodegradability rates, the use of PEGDMA in tissue engineering has been limited. Thiol-based monomers have been shown to improve the degradation rates of several PEG-based hydrogels, though their impact on several material properties has not been as well defined. In this work, several mercaptopropianoates, as well as mercaptoacetates, were mixed with PEGDMA and copolymerized. Following an initial polymerization check, it was determined that mercaptoacetate-based thiol monomers did not polymerize in the presence of PEGDMA, whereas mercaptopropionates were more successful. The wettability, and the compressive and tensile strength, in addition to the thermal properties, were determined for successfully copolymerized samples via a combination of differential scanning calorimetry, dynamic mechanical analysis, unconfined compression, and goniometry. Further study determined that dipentaerythritol hexa(3-mercaptopropionate) (DiPETMP) successfully enhanced the biodegradability of PEGDMA.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym11081339