Osteoblast Behavior on Hierarchical Micro-/Nano-Structured Titanium Surface

In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hierarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrolytic Etching (EE). MG-63 cells were cultured on disks for 2 h to 7 days. The osteobla...

Full description

Saved in:
Bibliographic Details
Published inJournal of bionics engineering Vol. 8; no. 3; pp. 234 - 241
Main Authors Meng, Weiyan, Zhou, Yanmin, Zhang, Yanjing, Cai, Qing, Yang, Liming, Zhao, Jinghui, Li, Chunyan
Format Journal Article
LanguageEnglish
Published Singapore Elsevier Ltd 01.09.2011
Springer Singapore
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hierarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrolytic Etching (EE). MG-63 cells were cultured on disks for 2 h to 7 days. The osteoblast response to the hierarchical hybrid micro-/nano-structured titanium surface was evaluated through the osteoblast cell morphology, attachment and proliferation. For comparison, MG-63 cells were also cultured on Sandblasted and Acid-etched (SLA) as well as Machined (M) surfaces respectively. The results show significant differences in the adhesion rates and proliferation levels of MG-63 cells on EE, SLA, and M surfaces. Both adhesion rate and proliferation level on EE surface are higher than those on SLA and M surfaces. Therefore, we may expect that, comparing with SLA and M surfaces, bone growth on EE surface could be accelerated and bone formation could be promoted at an early stage, which could be applied in the clinical practices for immediate and early-stage loadings.
Bibliography:22-1355/TB
In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hi- erarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrolytic Etching (EE). MG-63 cells were cultured on disks for 2 h to 7 days. The osteoblast response to the hierarchical hybrid micro-/nano-structured titanium surface was evaluated through the osteoblast cell morphology, attachment and proliferation. For comparison, MG-63 cells were also cultured on Sandblasted and Acid-etched (SEA) as well as Machined (M) surfaces respectively. The results show signifi- cant differences in the adhesion rates and proliferation levels of MG-63 cells on EE, SLA, and M surfaces. Both adhesion rate and proliferation level on EE surface are higher than those on SLA and M surfaces. Therefore, we may expect that, comparing with SLA and M surfaces, bone growth on EE surface could be accelerated and bone formation could be promoted at an early stage, which could be applied in the clinical practices for immediate and early-stage loadings.
dental implant, osteoblast, hierarchical micro-/nano-structure, surface treatment, electrolytic etching
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1672-6529
2543-2141
DOI:10.1016/S1672-6529(11)60031-0