Reactive Oxygen Species-Responsive Protein Modification and Its Intracellular Delivery for Targeted Cancer Therapy

Herein we report a convenient chemical approach to reversibly modulate protein (RNase A) function and develop a protein that is responsive to reactive oxygen species (ROS) for targeted cancer therapy. The conjugation of RNase A with 4‐nitrophenyl 4‐(4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl) benzy...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 53; no. 49; pp. 13444 - 13448
Main Authors Wang, Ming, Sun, Shuo, Neufeld, Caleb I., Perez-Ramirez, Bernardo, Xu, Qiaobing
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.12.2014
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Herein we report a convenient chemical approach to reversibly modulate protein (RNase A) function and develop a protein that is responsive to reactive oxygen species (ROS) for targeted cancer therapy. The conjugation of RNase A with 4‐nitrophenyl 4‐(4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl) benzyl carbonate (NBC) blocks protein lysine and temporarily deactivates the protein. However, the treatment of RNase A–NBC with hydrogen peroxide (one major intracellular ROS) efficiently cleaves the NBC conjugation and restores the RNase A activity. Thus, RNase A–NBC can be reactivated inside tumor cells by high levels of intracellular ROS, thereby restoring the cytotoxicity of RNase A for cancer therapy. Due to higher ROS levels inside tumor cells compared to healthy cells, and the resulting different levels of RNase A–NBC reactivation, RNase A–NBC shows a significant specific cytotoxicity against tumor cells. Reversible protein function modulation was achieved by a convenient chemical approach. RNase A was equipped with a boronic acid group (RNase A–NBC) that responds to reactive oxygen species (ROS). This complex shows cytotoxicity in the presence of ROS, as for example in cancer cells, whereas healthy cells are only affected at significantly higher concentrations.
Bibliography:ark:/67375/WNG-QVDDQ9DT-2
Tufts University
istex:0C1951F1ECBD3E602A405D661F677B0DB659D42D
ArticleID:ANIE201407234
This research was supported by Tufts University. Q.X. also acknowledges Pew Scholar for Biomedical Sciences program from Pew Charitable Trusts.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.201407234