outer membrane protein LptO is essential for the O-deacylation of LPS and the co-ordinated secretion and attachment of A-LPS and CTD proteins in Porphyromonas gingivalis

Protein substrates of a novel secretion system of Porphyromonas gingivalis contain a conserved C-terminal domain (CTD) essential for secretion and attachment to the cell surface. Inactivation of lptO (PG0027) or porT produced mutants that lacked surface protease activity and an electron-dense surfac...

Full description

Saved in:
Bibliographic Details
Published inMolecular microbiology Vol. 79; no. 5; pp. 1380 - 1401
Main Authors Chen, Yu-Yen, Peng, Benjamin, Yang, Qiaohui, Glew, Michelle D, Veith, Paul D, Cross, Keith J, Goldie, Kenneth N, Chen, Dina, O'Brien-Simpson, Neil, Dashper, Stuart G, Reynolds, Eric C
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.03.2011
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Protein substrates of a novel secretion system of Porphyromonas gingivalis contain a conserved C-terminal domain (CTD) essential for secretion and attachment to the cell surface. Inactivation of lptO (PG0027) or porT produced mutants that lacked surface protease activity and an electron-dense surface layer. Both mutants showed co-accumulation of A-LPS and unmodified CTD proteins in the periplasm. Lipid profiling by mass spectrometry showed the presence of both tetra- and penta-acylated forms of mono-phosphorylated lipid A in the wild-type and porT mutant, while only the penta-acylated forms of mono-phosphorylated lipid A were found in the lptO mutant, indicating a specific role of LptO in the O-deacylation of mono-phosphorylated lipid A. Increased levels of non-phosphorylated lipid A and the presence of novel phospholipids in the lptO mutant were also observed that may compensate for the missing mono-phosphorylated tetra-acylated lipid A in the outer membrane (OM). Molecular modelling predicted LptO to adopt a β-barrel structure characteristic of an OM protein, supported by the enrichment of LptO in OM vesicles. The results suggest that LPS deacylation by LptO is linked to the co-ordinated secretion of A-LPS and CTD proteins by a novel secretion and attachment system to form a structured surface layer.
Bibliography:http://dx.doi.org/10.1111/j.1365-2958.2010.07530.x
These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0950-382X
1365-2958
DOI:10.1111/j.1365-2958.2010.07530.x