The SRA Methyl-Cytosine-Binding Domain Links DNA and Histone Methylation

Epigenetic gene silencing suppresses transposon activity and is critical for normal development [1, 2]. Two common epigenetic gene-silencing marks are DNA methylation and histone H3 lysine 9 dimethylation (H3K9me2) [1]. In Arabidopsis thaliana, H3K9me2, catalyzed by the methyltransferase KRYPTONITE...

Full description

Saved in:
Bibliographic Details
Published inCurrent biology Vol. 17; no. 4; pp. 379 - 384
Main Authors Johnson, Lianna M., Bostick, Magnolia, Zhang, Xiaoyu, Kraft, Edward, Henderson, Ian, Callis, Judy, Jacobsen, Steven E.
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 20.02.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Epigenetic gene silencing suppresses transposon activity and is critical for normal development [1, 2]. Two common epigenetic gene-silencing marks are DNA methylation and histone H3 lysine 9 dimethylation (H3K9me2) [1]. In Arabidopsis thaliana, H3K9me2, catalyzed by the methyltransferase KRYPTONITE (KYP/SUVH4), is required for maintenance of DNA methylation outside of the standard CG sequence context [3, 4]. Additionally, loss of DNA methylation in the met1 mutant correlates with a loss of H3K9me2 [5, 6]. Here we show that KYP-dependent H3K9me2 is found at non-CG methylation sites in addition to those rich in CG methylation. Furthermore, we show that the SRA domain of KYP binds directly to methylated DNA, and SRA domains with missense mutations found in loss-of-function kyp mutants have reduced binding to methylated DNA in vitro. These data suggest that DNA methylation is required for the recruitment or activity of KYP and suggest a self-reinforcing loop between histone and DNA methylation. Lastly, we found that SRA domains from two Arabidopsis SRA-RING proteins also bind methylated DNA and that the SRA domains from KYP and SRA-RING proteins prefer methylcytosines in different sequence contexts. Hence, unlike the methyl-binding domain (MBD), which binds only methylated-CpG sequences, the SRA domain is a versatile new methyl-DNA-binding motif.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:0960-9822
1879-0445
DOI:10.1016/j.cub.2007.01.009