Anisotropic material properties of fused deposition modeling ABS

Rapid Prototyping (RP) technologies provide the ability to fabricate initial prototypes from various model materials. Stratasys Fused Deposition Modeling (FDM) is a typical RP process that can fabricate prototypes out of ABS plastic. To predict the mechanical behavior of FDM parts, it is critical to...

Full description

Saved in:
Bibliographic Details
Published inRapid prototyping journal Vol. 8; no. 4; pp. 248 - 257
Main Authors Ahn, Sung-Hoon, Montero, Michael, Odell, Dan, Roundy, Shad, Wright, Paul K.
Format Journal Article
LanguageEnglish
Published Bradford MCB UP Ltd 01.10.2002
Emerald Group Publishing Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Rapid Prototyping (RP) technologies provide the ability to fabricate initial prototypes from various model materials. Stratasys Fused Deposition Modeling (FDM) is a typical RP process that can fabricate prototypes out of ABS plastic. To predict the mechanical behavior of FDM parts, it is critical to understand the material properties of the raw FDM process material, and the effect that FDM build parameters have on anisotropic material properties. This paper characterizes the properties of ABS parts fabricated by the FDM 1650. Using a Design of Experiment (DOE) approach, the process parameters of FDM, such as raster orientation, air gap, bead width, color, and model temperature were examined. Tensile strengths and compressive strengths of directionally fabricated specimens were measured and compared with injection molded FDM ABS P400 material. For the FDM parts made with a 0.003 inch overlap between roads, the typical tensile strength ranged between 65 and 72 percent of the strength of injection molded ABS P400. The compressive strength ranged from 80 to 90 percent of the injection molded FDM ABS. Several build rules for designing FDM parts were formulated based on experimental results.
Bibliography:filenameID:1560080405
original-pdf:1560080405.pdf
istex:79E41C2A7C9F19B3D3082FE22B5BEC82D6C405DA
ark:/67375/4W2-8071RQ05-M
href:13552540210441166.pdf
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1355-2546
1758-7670
DOI:10.1108/13552540210441166