Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability

Endothelial to mesenchymal transition (EndMT) plays a major role during development, and also contributes to several adult cardiovascular diseases. Importantly, mesenchymal cells including fibroblasts are prominent in atherosclerosis, with key functions including regulation of: inflammation, matrix...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 7; no. 1; pp. 11853 - 16
Main Authors Evrard, Solene M., Lecce, Laura, Michelis, Katherine C., Nomura-Kitabayashi, Aya, Pandey, Gaurav, Purushothaman, K-Raman, d’Escamard, Valentina, Li, Jennifer R., Hadri, Lahouaria, Fujitani, Kenji, Moreno, Pedro R., Benard, Ludovic, Rimmele, Pauline, Cohain, Ariella, Mecham, Brigham, Randolph, Gwendalyn J., Nabel, Elizabeth G., Hajjar, Roger, Fuster, Valentin, Boehm, Manfred, Kovacic, Jason C.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.06.2016
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Endothelial to mesenchymal transition (EndMT) plays a major role during development, and also contributes to several adult cardiovascular diseases. Importantly, mesenchymal cells including fibroblasts are prominent in atherosclerosis, with key functions including regulation of: inflammation, matrix and collagen production, and plaque structural integrity. However, little is known about the origins of atherosclerosis-associated fibroblasts. Here we show using endothelial-specific lineage-tracking that EndMT-derived fibroblast-like cells are common in atherosclerotic lesions, with EndMT-derived cells expressing a range of fibroblast-specific markers. In vitro modelling confirms that EndMT is driven by TGF-β signalling, oxidative stress and hypoxia; all hallmarks of atherosclerosis. ‘Transitioning’ cells are readily detected in human plaques co-expressing endothelial and fibroblast/mesenchymal proteins, indicative of EndMT. The extent of EndMT correlates with an unstable plaque phenotype, which appears driven by altered collagen-MMP production in EndMT-derived cells. We conclude that EndMT contributes to atherosclerotic patho-biology and is associated with complex plaques that may be related to clinical events. Endothelial to mesenchymal transition (EndMT) is a crucial developmental process that also plays a role in the pathogenesis of some diseases. Here the authors show that EndMT contributes to the development of atherosclerosis in mice and humans, and is associated with complex human plaques that may be prone to rupture.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms11853