Cardioprotective Effects of Pitavastatin on Cardiac Performance and Remodeling in Failing Rat Hearts

Background Activation of phosphatidylinositol 3-kinase (PI3K)-Akt signaling by statins increases the activity of endothelial nitric oxide synthase (eNOS). We investigate whether statins (pitavastatin) improve cardiac function and remodeling via eNOS production associated with the PI3K-Akt signaling...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of hypertension Vol. 22; no. 2; pp. 176 - 182
Main Authors Kobayashi, Naohiko, Takeshima, Hiroshi, Fukushima, Hiromichi, Koguchi, Wataru, Mamada, Yasuko, Hirata, Hisato, Machida, Yoshifumi, Shinoda, Motoo, Suzuki, Noriko, Yokotsuka, Fumie, Tabei, Kyoko, Matsuoka, Hiroaki
Format Journal Article
LanguageEnglish
Published Basingstoke Oxford University Press 01.02.2009
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background Activation of phosphatidylinositol 3-kinase (PI3K)-Akt signaling by statins increases the activity of endothelial nitric oxide synthase (eNOS). We investigate whether statins (pitavastatin) improve cardiac function and remodeling via eNOS production associated with the PI3K-Akt signaling pathway, Rho-kinase (ROCK) pathway, and the development of oxidative stress in Dahl salt-sensitive (DS) hypertensive rats with heart failure (DSHF). Methods Pitavastatin (3 mg/kg per day), or pitavastatin plus specific PI3K inhibitor, wortmannin (1 mg/kg per day), or wortmannin alone were administered from the age of 11–18 weeks. Age-matched male Dahl salt-resistant (DR) rats served as a control group. Results Decreased end-systolic elastance (Ees) and percent fractional shortening (%FS) in failing rats was significantly ameliorated by pitavastatin, but not pitavastatin plus wortmannin or wortmannin alone. Upregulation of eNOS and Akt phosphorylation by pitavastatin was suppressed by pitavastatin plus wortmannin or wortmannin alone. Pitavastatin effectively inhibited the vascular lesion formation such as medial thickness and perivascular fibrosis, but not pitavastatin plus wortmannin or wortmannin alone. Activated RhoA and myosin light chain phosphorylation and RhoA, ROCK expression was inhibited by pitavastatin or a specific ROCK inhibitor, Y-27632, and downregulated eNOS expression and Akt phosphorylation was ameliorated by Y-27632. Increased expression of NAD(P)H oxidase subunits and activated p65 nuclear factor (NF)-κB, p44/p42 extracellular signal-regulated kinases and its downstream effector p90 ribosomal S6 kinase phosphorylation in failing rat hearts was inhibited by pitavastatin. Conclusions These findings suggest that pitavastatin may improve cardiac function and remodeling via eNOS production associated with the PI3K-Akt signaling pathway, the ROCK pathway and oxidative stress.
Bibliography:ark:/67375/HXZ-K562ZW9S-7
istex:D4A96B914B24BFF3ED2A6D0440456CAA34DEE585
href:22_2_176.pdf
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0895-7061
1879-1905
1941-7225
DOI:10.1038/ajh.2008.333