Carnosine Modulates Stress-Attenuated Plasma Antioxidative Capacity

Oral administration of carnosine (β-alanyl-L-histidine) in mice treated with restraint stress moderately alleviated a stress-induced decrease in plasma oxygen radical absorbance capacity (ORAC) activity (P = 0.075). Carnosine treatment also increased the level of plasma glutathione (GSH) and ascorbi...

Full description

Saved in:
Bibliographic Details
Published inFood Science and Technology Research Vol. 15; no. 2; pp. 179 - 184
Main Authors Kurihara, Hiroshi, Shibata, Hiroshi, Tsuruoka, Nobuo, Kiso, Yoshinobu, Abe, Keiich, Nagai, Hajime, Fukami, Harukazu
Format Journal Article
LanguageEnglish
Published Tsukuba Japanese Society for Food Science and Technology 2009
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Oral administration of carnosine (β-alanyl-L-histidine) in mice treated with restraint stress moderately alleviated a stress-induced decrease in plasma oxygen radical absorbance capacity (ORAC) activity (P = 0.075). Carnosine treatment also increased the level of plasma glutathione (GSH) and ascorbic acid compared with those in the restraint stress mice. Carnosine and related compounds anserine, histidine and histamine exhibited ORAC activity in vitro, while β-alanine was not effective. These results suggest that carnosine exerts a protective effect against the stress-induced elevation of the oxidative level in plasma.
AbstractList Oral administration of carnosine (β-alanyl-L-histidine) in mice treated with restraint stress moderately alleviated a stress-induced decrease in plasma oxygen radical absorbance capacity (ORAC) activity (P = 0.075). Carnosine treatment also increased the level of plasma glutathione (GSH) and ascorbic acid compared with those in the restraint stress mice. Carnosine and related compounds anserine, histidine and histamine exhibited ORAC activity in vitro, while β-alanine was not effective. These results suggest that carnosine exerts a protective effect against the stress-induced elevation of the oxidative level in plasma.
Author Shibata, Hiroshi
Abe, Keiich
Nagai, Hajime
Kiso, Yoshinobu
Kurihara, Hiroshi
Tsuruoka, Nobuo
Fukami, Harukazu
Author_xml – sequence: 1
  fullname: Kurihara, Hiroshi
– sequence: 2
  fullname: Shibata, Hiroshi
– sequence: 3
  fullname: Tsuruoka, Nobuo
– sequence: 4
  fullname: Kiso, Yoshinobu
– sequence: 5
  fullname: Abe, Keiich
– sequence: 6
  fullname: Nagai, Hajime
– sequence: 7
  fullname: Fukami, Harukazu
BookMark eNo9kE1Lw0AQhhepYFs9-QMMeJTUnexHNjdL8AsqCrXnZZJsakqa1N2N2H9vakovM8PMwzPwTsioaRtDyDXQGQMm70vn7QzEDOLkjIxBKQhZovionxnnoZRUXpCJcxtKQSQqGpM0Rdu0rmpM8NYWXY3euGDprXEunHtvmq7fFMFHjW6LwbzxVftbFeirHxOkuMO88vtLcl5i7czVsU_J6unxM30JF-_Pr-l8EeaCSx-yUmS0THImTaF4nIPEDGhkAIoiAxSYYSxEbFgmsqIsORiFGGVKCFlEikVsSm4H7862351xXm_azjb9Sw1cMhUD_6fuBiq3rXPWlHpnqy3avQaqDynpQ0oahO5T6umHgd44j2tzYtH6Kq_NiY2OJU5Op_wLrTZNr7gZFCW2Gte2cnq1jCgwCpIzzhj7A1RzfgI
CitedBy_id crossref_primary_10_1254_jphs_11131FP
crossref_primary_10_1371_journal_pone_0033190
crossref_primary_10_1016_j_talanta_2012_02_036
crossref_primary_10_1271_bbb_90950
crossref_primary_10_1111_j_1439_0396_2012_01303_x
crossref_primary_10_1111_j_1750_3841_2012_02625_x
Cites_doi 10.1093/jn/133.3.933S
10.1016/0014-5793(95)00849-5
10.1093/jn/134.3.489
10.1016/0149-7634(86)90017-5
10.1021/jf000765q
10.1021/jf0262256
10.1096/fj.02-0752rev
10.1016/0959-8049(95)00531-5
10.1093/ageing/29.3.207
10.1006/bbrc.1998.8806
10.1006/abbi.1995.1125
10.1111/j.1749-6632.2002.tb02100.x
10.1016/S0147-9563(96)80030-6
10.3136/nskkk.51.238
10.1016/S0024-3205(02)01522-9
10.1177/153537020222700916
10.1021/jf0116606
10.1002/jbt.10058
10.1152/ajpregu.1997.273.5.R1585
10.1080/10408399509527682
10.3177/jnsv.46.321
10.1093/clinchem/41.12.1738
10.1001/archneur.56.12.1449
10.1152/jappl.1994.77.5.2177
10.3177/jnsv.31.607
10.1152/ajpregu.00275.2004
10.1161/hq1001.097021
10.1248/bpb.27.1093
10.1177/153537020322801007
10.3109/10715769109088955
10.1152/ajplung.1989.257.4.L163
10.1161/01.CIR.0000093660.86242.BB
10.1016/S0304-3940(97)00873-2
ContentType Journal Article
Copyright 2009 by Japanese Society for Food Science and Technology
Copyright Japan Science and Technology Agency 2009
Copyright_xml – notice: 2009 by Japanese Society for Food Science and Technology
– notice: Copyright Japan Science and Technology Agency 2009
DBID FBQ
AAYXX
CITATION
7QO
7QR
7T7
8FD
C1K
F28
FR3
K9.
P64
DOI 10.3136/fstr.15.179
DatabaseName AGRIS
CrossRef
Biotechnology Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
ANTE: Abstracts in New Technology & Engineering
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Biotechnology Research Abstracts

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 1881-3984
EndPage 184
ExternalDocumentID 3143697261
10_3136_fstr_15_179
article_fstr_15_2_15_2_179_article_char_en
US201301643433
GroupedDBID 2WC
53G
5GY
ABJNI
ACGFO
ACIWK
ACPRK
ADBBV
ADDVE
AENEX
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AZPMC
CS3
DU5
FBQ
HH5
JMI
JSF
JSH
JSI
JSP
KUZGX
O1H
OK1
PQQKQ
RJT
RKO
RZJ
TKC
TR2
~KM
PQEST
AAYXX
CITATION
7QO
7QR
7T7
8FD
C1K
F28
FR3
K9.
P64
ID FETCH-LOGICAL-c546t-3f5b0f9c36ed847c16ab102e11ddb1a5aba7557e3b5bdff41e8aa2b8556d28323
ISSN 1344-6606
IngestDate Fri Sep 13 03:12:25 EDT 2024
Fri Aug 23 01:11:25 EDT 2024
Thu Aug 17 20:28:37 EDT 2023
Wed Dec 27 19:16:55 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c546t-3f5b0f9c36ed847c16ab102e11ddb1a5aba7557e3b5bdff41e8aa2b8556d28323
OpenAccessLink https://www.jstage.jst.go.jp/article/fstr/15/2/15_2_179/_article/-char/en
PQID 1463871432
PQPubID 1996352
PageCount 6
ParticipantIDs proquest_journals_1463871432
crossref_primary_10_3136_fstr_15_179
jstage_primary_article_fstr_15_2_15_2_179_article_char_en
fao_agris_US201301643433
PublicationCentury 2000
PublicationDate 20090000
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – year: 2009
  text: 20090000
PublicationDecade 2000
PublicationPlace Tsukuba
PublicationPlace_xml – name: Tsukuba
PublicationTitle Food Science and Technology Research
PublicationTitleAlternate Food Science and Technology Research
PublicationYear 2009
Publisher Japanese Society for Food Science and Technology
Japan Science and Technology Agency
Publisher_xml – name: Japanese Society for Food Science and Technology
– name: Japan Science and Technology Agency
References Maritim, A.C., Sanders, R.A. and Watkins, J.B. (2003). Diabetes, oxidative stress, and antioxidants: a review. J. Biochem. Mol. Toxicol., 17, 24-38.
Jiao, H. and Wang, S.Y. (2000). Correlation of antioxidant capacities to oxygen radical scavenging enzyme activities in blackberry. J. Agric. Food Chem., 48, 5672-5676.
Kurihara, H., Fukami, H., Asami, S., Toyoda, Y., Nakai, M., Shibata, H. and Yao, X-S. (2004). Effects of oolong tea on plasma antioxidative capacity in mice loaded with restraint stress assessed using the oxygen radical absorbance capacity (ORAC) assay. Biol. Pharm. Bull., 27, 1093-1098.
Zapp, J.A. Jr. and Wilson, D.W. (1938). Quantitative studies of carnosine and anserine in mammalian muscle. II. The distribution of carnosine and anserine in various muscles of different species. J. Biol. Chem., 126, 19-27.
Hipkiss, A.R., Michaelis, J. and Syrris, P. (1995). Non-enzymatic glycosylation of the dipeptide L-carnosine, a potential anti-protein-cross-linking agent. FEBS Lett., 371, 81-85.
Paré, W.P. and Glavin, G.B. (1986). Restraint stress in biomedical research: a review. Neurosci. Biobehav. Rev., 10, 339-370.
Toutain, P.L., Bechu, D. and Hidroglou, M. (1997). Ascorbic acid disposition kinetics in the plasma and tissues of calves. Am. J. Physiol. Regulatory Integrative Comp. Physiol., 273, 1585-1597.
Hipkiss, A.R., Preston, J.E., Himswoth, D.T., Worthington, V.C. and Abbot, N.J. (1997). Protective effects of carnosine against malondialdehyde-induced toxicity towards cultured rat brain endothelial cells. Neurosci. Lett., 238, 135-138.
Deneke, S.M. and Fanburg, B.L. (1989). Regulation of cellular glutathione. Am. J. Physiol. Lung Cell Mol. Physiol., 257, 163-173.
Prior, R. L., Hoang, H., Gu, L., Wu, X., Bacchiocca, M., Howard, L., Hampsch-Woodill, M., Huang, D., Ou, B. and Jacob, R. (2003). Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J. Agric. Food Chem., 51, 3273-3279.
Tanida, M., Niijima, A., Fukuda, Y., Sawai, H., Tsuruoka, N., Shen, J., Yamada, S., Kiso, Y. and Nagai, K. (2005). Dose-dependent effects of L-carnosine on the renal sympathetic nerve and blood pressure in urethane-anesthetized rats. Am. J. Physiol. Regulatory Integrative Comp. Physiol., 288, R447-455.
Leeuwenburgh, C. and Ji, LL. (1995). Glutathione depletion in rested and exercised mice: biochemical consequence and adaptation. Arch. Biochem. Biophys., 316, 941-949.
William, R. and Markesbery, W.R. (1999). The role of oxidative stress in Alzheimer Disease. Arch. Neurol., 56, 1449-1452.
Nagai, K., Niijima, A., Yamano, T., Otani, H., Okumura, N., Tsuruoka, N., Nakai, M. and Kiso, Y. (2003). Possible role of L-carnosine in the regulation of blood glucose through controlling autonomic nerves. Exp. Biol. Med., 228, 1138-1145.
Ihara, H., Shino, Y., Aoki, Y., Hashizume, N. and Minegishi, N. (2000). A simple and rapid method for the routine assay of total ascorbic acid in serum and plasma using ascorbate oxidase and o-phenylenediamine. J. Nutr. Sci. Vitaminol. (Tokyo)., 46, 321-324.
Halliwell, B., Murcia, M.A., Chirico, S. and Aruoma, O.I. (1995). Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit. Rev. Food Sci. Nutr., 35, 7-20.
Hipkiss, A.R., Brownson, C., Bertani, M.F., Ruiz, E. and Ferro, A. (2002). Reaction of carnosine with aged proteins: another protective process? Ann. N.Y. Acad. Sci., 959, 285-294.
Kurihara, H., Koda, H., Asami, S., Kiso, Y. and Tanaka, T. (2002). Contribution of the antioxidative property of astaxanthin to its protective effect on the promotion of cancer metastasis in mice treated with restraint stress. Life Sci., 70, 2509-2520.
Wu, G., Fang, Y.Z., Yang, S., Lupton, J.R. and Turner, N.D. (2004). Glutathione metabolism and its implications for health. J. Nutr., 134, 489-492.
Esch, T., Stafano, G.B., Fricchione, G.L. and Benson, H. (2002). Stress-related diseases - a potential role for nitric oxide. Med. Sci. Monit., 8, RA103-118.
Cooke, M.S., Evans, M.D., Dizdaroglu, M. and Lunec, J. (2003). Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J., 17, 1195-1214.
Gariballa, S. and Sinclair, A. (2000). Carnosine: physiological properties and therapeutic potential. Age Ageing., 29, 207-210.
Cao, G., Verdon, C.P., Wu, A.H., Wang, H. and Prior, R.L. (1995). Automated assay of oxygen radical absorbance capacity with the COBAS FARA II. Clin. Chem., 41, 1738-1744.
Ou, B., Huang, D., Hampsch-Woodill, M., Flanagan, J.A. and Deemer, E.K. (2002). Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J. Agric. Food Chem., 50, 3122-3128.
Stuerenburg, H.J. (2000). The roles of carnosine in aging of skeletal muscle and in neuromuscular diseases. Biochemistry (Mosc)., 65, 862-865.
Hipkiss, A.R. and Chana, H. (1998). Carnosine protects proteins against methylglyoxal-mediated modifications. Biochem. Biophys. Res. Commun., 248, 28-32.
Zhang, J., Liu, Y., Shi, J., Larson, D.F. and Watson, R.R. (2002). Side-stream cigarette smoke induces dose-response in systemic inflammatory cytokine production and oxidative stress. Exp. Biol. Med., 227, 823-829.
Kerr, M.E., Bender, C.M. and Monti, E.J. (1996). An introduction to oxygen free radicals. Heart Lung., 25, 200-209.
Salim-Hanna, M., Lissi, E. and Videla, L.A. (1991). Free radical scavenging activity of carnosine. Free. Radic. Res. Commun., 14, 263-270.
Tamaki, N., Ikeda, T., Fujimoto, S. and Mizutani, N. (1985). Carnosine as a histidine source: transport and hydrolysis of exogenous carnosine by rat intestine. J. Nutr. Sci. Vitaminol., 31, 607-618.
Griendling, K.K. and FitzGerald, G.A. (2003). Oxidative stress and cardiovascular injury: Part I: Basic mechanisms and in vivo monitoring of ROS. Circulation., 108, 1912-1916.
Haramaki, N., Ikeda, H., Takajo, Y., Katoh, A. Kanaya, S., Shintani, S., Haramaki, R., Murohara, T. and Imaizumi, T. (2001). Longterm smoking causes nitroglycerin resistance in platelets by depletion of intraplatelet glutathione. Arterioscler. Thromb. Vasc. Biol., 21, 1852-1856.
Sen, C.K., Atalay, M. and Hanninen, O. (1994). Exercise-induced oxidative stress: glutathione supplementation and deficiency. J. Appl. Physiol., 77, 2177-2187.
William J., Reddy, W.J. and Hegsted, D.M. (1962). The measurement and distribution of carnosine in the rat. J. Biol. Chem., 237, 705-706.
Yanai, N., Shiotani, S., Mizuno, M., Nabetani, H. and Nakajima, M. (2004). Characteristics of anti-oxidative activity of carnosine and anserine mixture isolated from chicken extract: comparison with other botanical antioxidants. Nippon Shokuhin Kagaku Kogaku Kaishi, 51, 238-246.
Decker, E.A., Livisay, S.A. and Zhou, S. (2000). A re-evaluation of the antioxidant activity of purified carnosine. Biochemistry (Mosc)., 65, 766-770.
Mayne, S.T. (2003). Antioxidant nutrients and chronic disease: Use of biomarkers of exposure and oxidative stress status in epidemiologic research. J. Nutr., 133, 933-940.
Dreher, D. and Junod, A.F. (1996). Role of oxygen free radicals in cancer development. Eur. J. Cancer., 32A, 30-38.
22
23
24
25
26
27
28
29
YANAI NOBUYA (36) 2004; 51
31
10
32
11
33
12
HIPKISS A R (14) 2002; 959
34
13
37
16
38
17
18
19
1
2
3
4
5
6
7
TAMAKI N (30) 1985; 31
8
9
IHARA H (15) 2000; 46
WU G (35) 2004; 134
20
21
References_xml – ident: 22
  doi: 10.1093/jn/133.3.933S
– ident: 11
  doi: 10.1016/0014-5793(95)00849-5
– volume: 134
  start-page: 489
  issn: 0022-3166
  issue: 3
  year: 2004
  ident: 35
  doi: 10.1093/jn/134.3.489
  contributor:
    fullname: WU G
– ident: 37
– ident: 25
  doi: 10.1016/0149-7634(86)90017-5
– ident: 33
– ident: 16
  doi: 10.1021/jf000765q
– ident: 26
  doi: 10.1021/jf0262256
– ident: 2
  doi: 10.1096/fj.02-0752rev
– ident: 5
  doi: 10.1016/0959-8049(95)00531-5
– ident: 7
  doi: 10.1093/ageing/29.3.207
– ident: 13
  doi: 10.1006/bbrc.1998.8806
– ident: 20
  doi: 10.1006/abbi.1995.1125
– volume: 959
  start-page: 285
  issn: 0077-8923
  year: 2002
  ident: 14
  doi: 10.1111/j.1749-6632.2002.tb02100.x
  contributor:
    fullname: HIPKISS A R
– ident: 3
– ident: 17
  doi: 10.1016/S0147-9563(96)80030-6
– volume: 51
  start-page: 238
  issn: 1341-027X
  issue: 5
  year: 2004
  ident: 36
  doi: 10.3136/nskkk.51.238
  contributor:
    fullname: YANAI NOBUYA
– ident: 18
  doi: 10.1016/S0024-3205(02)01522-9
– ident: 38
  doi: 10.1177/153537020222700916
– ident: 24
  doi: 10.1021/jf0116606
– ident: 21
  doi: 10.1002/jbt.10058
– ident: 32
  doi: 10.1152/ajpregu.1997.273.5.R1585
– ident: 29
– ident: 9
  doi: 10.1080/10408399509527682
– volume: 46
  start-page: 321
  issn: 0301-4800
  issue: 6
  year: 2000
  ident: 15
  doi: 10.3177/jnsv.46.321
  contributor:
    fullname: IHARA H
– ident: 1
  doi: 10.1093/clinchem/41.12.1738
– ident: 34
  doi: 10.1001/archneur.56.12.1449
– ident: 28
  doi: 10.1152/jappl.1994.77.5.2177
– volume: 31
  start-page: 607
  issn: 0301-4800
  issue: 6
  year: 1985
  ident: 30
  doi: 10.3177/jnsv.31.607
  contributor:
    fullname: TAMAKI N
– ident: 31
  doi: 10.1152/ajpregu.00275.2004
– ident: 10
  doi: 10.1161/hq1001.097021
– ident: 19
  doi: 10.1248/bpb.27.1093
– ident: 23
  doi: 10.1177/153537020322801007
– ident: 27
  doi: 10.3109/10715769109088955
– ident: 4
  doi: 10.1152/ajplung.1989.257.4.L163
– ident: 6
– ident: 8
  doi: 10.1161/01.CIR.0000093660.86242.BB
– ident: 12
  doi: 10.1016/S0304-3940(97)00873-2
SSID ssj0015982
Score 1.8335259
Snippet Oral administration of carnosine (β-alanyl-L-histidine) in mice treated with restraint stress moderately alleviated a stress-induced decrease in plasma oxygen...
SourceID proquest
crossref
jstage
fao
SourceType Aggregation Database
Publisher
StartPage 179
SubjectTerms alanine
animal models
anserine
antioxidants
ascorbic acid
beta-alanine
bioassays
blood plasma
carnosine
chemical composition
free radical scavengers
glutathione
histamine
histidine
human physiology
lipid peroxidation
mice
oxygen radical absorbance capacity
oxygen radical absorbance capacity (ORAC)
protective effect
quantitative analysis
reactive oxygen species
restraint-stress
stress tolerance
Title Carnosine Modulates Stress-Attenuated Plasma Antioxidative Capacity
URI https://www.jstage.jst.go.jp/article/fstr/15/2/15_2_179/_article/-char/en
https://www.proquest.com/docview/1463871432/abstract/
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Food Science and Technology Research, 2009, Vol.15(2), pp.179-184
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNAcBXKAS6IpxooyAdulUO8T_tookZJWxqU2FJv1q7XboNEgmJHQvwGP8ys19nEtELAZRXt-pWZ2XnuzCD0Pjc1zQod-kKF3KdESz_SnPk8B3TrUOOhNA79T1d8ktLza3bd6_08OLW0rdUg_3FvXsn_YBXmAK8mS_YfMOseChPwG_ALI2AYxr_C8UhuVmtzcN20NDN9uIqqCTNXlR_XoAxvpdEnP4OC_FWaMgHL9feltpW-RyAk82XdCeqOTYXjXZ5Pc7LS-d1P26JAznl8kc6nk3geN6JrCaL2dumcNZPpxzi5byVZpPN0dhHbgJHart3TpotZIwzM1StY6Tgj9szuHL56z4_MJ-5DA6dxk0Z6wGUJpT7nw7YGtp0Lw8Anke0X51gzOyBBfMBnA9uB5nf-T2yDmrKqN4OADdqrulW2r2bZOL28zJKz66S7aqU6KJA8EtiY1A-xAPOx4fbOpgpMxcPGim__g036NG_-cPDejprzoJRr0HC-gL5_c1foN5pM8hQ9aU0QL7b09Az1itVz9GiXoV69QCNHV56jK-8OXXmWrrwOXXk7unqJ0vFZMpr4bbMNP2eU1z4pmRqWUU447Fwq8oBLBcpnEQRaq0AyqaRgTBREMaXLkgZFKCVWIWNcm3ZX5BU6Wq1XxTHyeMFxrhkuKVY055HCw4LKiFEhgpwORR9YRAub7JutqZKBLWpAmBkQZgHLAIR9dAxwy-QNSLssXWATYwfjnlBC-iiywHT3t3vQ3Y_bQURuyaQxAtfoo5Md_LN2L1fGACahANTj139efoMe23iiccKdoKN6sy3eglpaq3cNmfwCTjeQWw
link.rule.ids 315,786,790,4043,27956,27957,27958
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carnosine+Modulates+Stress-Attenuated+Plasma+Antioxidative+Capacity&rft.jtitle=Food+science+and+technology+research&rft.au=KURIHARA%2C+Hiroshi&rft.au=SHIBATA%2C+Hiroshi&rft.au=TSURUOKA%2C+Nobuo&rft.au=KISO%2C+Yoshinobu&rft.date=2009&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1344-6606&rft.eissn=1881-3984&rft.volume=15&rft.issue=2&rft.spage=179&rft_id=info:doi/10.3136%2Ffstr.15.179&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3143697261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-6606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-6606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-6606&client=summon