Drug Delivery Systems for Personal Healthcare by Smart Wearable Patch System

Smart wearable patch systems that combine biosensing and therapeutic components have emerged as promising approaches for personalized healthcare and therapeutic platforms that enable self-administered, noninvasive, user-friendly, and long-acting smart drug delivery. Sensing components can continuous...

Full description

Saved in:
Bibliographic Details
Published inBiomolecules (Basel, Switzerland) Vol. 13; no. 6; p. 929
Main Authors Khadka, Bikram, Lee, Byeongmoon, Kim, Ki-Taek
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.06.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Smart wearable patch systems that combine biosensing and therapeutic components have emerged as promising approaches for personalized healthcare and therapeutic platforms that enable self-administered, noninvasive, user-friendly, and long-acting smart drug delivery. Sensing components can continuously monitor physiological and biochemical parameters, and the monitoring signals can be transferred to various stimuli using actuators. In therapeutic components, stimuli-responsive carrier-based drug delivery systems (DDSs) provide on-demand drug delivery in a closed-loop manner. This review provides an overview of the recent advances in smart wearable patch systems, focusing on sensing components, stimuli, and therapeutic components. Additionally, this review highlights the potential of fully integrated smart wearable patch systems for personalized medicine. Furthermore, challenges associated with the clinical applications of this system and future perspectives are discussed, including issues related to drug loading and reloading, biocompatibility, accuracy of sensing and drug delivery, and largescale fabrication.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:2218-273X
2218-273X
DOI:10.3390/biom13060929