Excited-state proton transfer relieves antiaromaticity in molecules

Baird’s rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4n + 2] π-aromatic in the ground state, become [4n + 2] π-antiaromatic in the first ¹ππ* states, and proton transfer (either inter- or intramolecularly) hel...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 116; no. 41; pp. 20303 - 20308
Main Authors Wu, Chia-Hua, Karas, Lucas José, Ottosson, Henrik, Wu, Judy I-Chia
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 08.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Baird’s rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4n + 2] π-aromatic in the ground state, become [4n + 2] π-antiaromatic in the first ¹ππ* states, and proton transfer (either inter- or intramolecularly) helps relieve excited-state antiaromaticity. Computed nucleus-independent chemical shifts (NICS) for several ESPT examples (including excited-state intramolecular proton transfers (ESIPT), biprotonic transfers, dynamic catalyzed transfers, and proton relay transfers) document the important role of excited-state antiaromaticity. o-Salicylic acid undergoes ESPT only in the “antiaromatic” S₁ (¹ππ*) state, but not in the “aromatic” S₂ (¹ππ*) state. Stokes’ shifts of structurally related compounds [e.g., derivatives of 2-(2-hydroxyphenyl)benzoxazole and hydrogen-bonded complexes of 2-aminopyridine with protic substrates] vary depending on the antiaromaticity of the photoinduced tautomers. Remarkably, Baird’s rule predicts the effect of light on hydrogen bond strengths; hydrogen bonds that enhance (and reduce) excited-state antiaromaticity in compounds become weakened (and strengthened) upon photoexcitation.
AbstractList Excited-state proton transfer (ESPT) is universally recognized as a reaction that relaxes the energy of a photoexcited organic compound. It is commonly found in many light-driven processes. Here we identify decisive principles underlying why and when ESPT happens. Our computational investigation of prototypical ESPT reactions finds that the occurrence of ESPT can be explained by an electron-counting rule—Baird’s rule, which remains largely ignored despite having a near–50-y-old history. We emphasize that this surprising connection not only explains the mechanistic principle of ESPT reactions, but it also predicts whether hydrogen bonding interactions that form within and between organic compounds might strengthen or weaken when irradiated by light. Recognizing this relationship has tremendous interpretive merit for organic photochemistry. Baird’s rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4 n + 2] π-aromatic in the ground state, become [4 n + 2] π-antiaromatic in the first 1 ππ* states, and proton transfer (either inter- or intramolecularly) helps relieve excited-state antiaromaticity. Computed nucleus-independent chemical shifts (NICS) for several ESPT examples (including excited-state intramolecular proton transfers (ESIPT), biprotonic transfers, dynamic catalyzed transfers, and proton relay transfers) document the important role of excited-state antiaromaticity. o- Salicylic acid undergoes ESPT only in the “antiaromatic” S 1 ( 1 ππ*) state, but not in the “aromatic” S 2 ( 1 ππ*) state. Stokes’ shifts of structurally related compounds [e.g., derivatives of 2-(2-hydroxyphenyl)benzoxazole and hydrogen-bonded complexes of 2-aminopyridine with protic substrates] vary depending on the antiaromaticity of the photoinduced tautomers. Remarkably, Baird’s rule predicts the effect of light on hydrogen bond strengths; hydrogen bonds that enhance (and reduce) excited-state antiaromaticity in compounds become weakened (and strengthened) upon photoexcitation.
Baird’s rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4 n + 2] π-aromatic in the ground state, become [4 n + 2] π-antiaromatic in the first 1 ππ* states, and proton transfer (either inter- or intramolecularly) helps relieve excited-state antiaromaticity. Computed nucleus-independent chemical shifts (NICS) for several ESPT examples (including excited-state intramolecular proton transfers (ESIPT), biprotonic transfers, dynamic catalyzed transfers, and proton relay transfers) document the important role of excited-state antiaromaticity. o- Salicylic acid undergoes ESPT only in the “antiaromatic” S 1 ( 1 ππ*) state, but not in the “aromatic” S 2 ( 1 ππ*) state. Stokes’ shifts of structurally related compounds [e.g., derivatives of 2-(2-hydroxyphenyl)benzoxazole and hydrogen-bonded complexes of 2-aminopyridine with protic substrates] vary depending on the antiaromaticity of the photoinduced tautomers. Remarkably, Baird’s rule predicts the effect of light on hydrogen bond strengths; hydrogen bonds that enhance (and reduce) excited-state antiaromaticity in compounds become weakened (and strengthened) upon photoexcitation.
Baird's rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4n + 2] π-aromatic in the ground state, become [4n + 2] π-antiaromatic in the first 1ππ* states, and proton transfer (either inter- or intramolecularly) helps relieve excited-state antiaromaticity. Computed nucleus-independent chemical shifts (NICS) for several ESPT examples (including excited-state intramolecular proton transfers (ESIPT), biprotonic transfers, dynamic catalyzed transfers, and proton relay transfers) document the important role of excited-state antiaromaticity. o-Salicylic acid undergoes ESPT only in the "antiaromatic" S1 (1ππ*) state, but not in the "aromatic" S2 (1ππ*) state. Stokes' shifts of structurally related compounds [e.g., derivatives of 2-(2-hydroxyphenyl)benzoxazole and hydrogen-bonded complexes of 2-aminopyridine with protic substrates] vary depending on the antiaromaticity of the photoinduced tautomers. Remarkably, Baird's rule predicts the effect of light on hydrogen bond strengths; hydrogen bonds that enhance (and reduce) excited-state antiaromaticity in compounds become weakened (and strengthened) upon photoexcitation.
Baird’s rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4n + 2] π-aromatic in the ground state, become [4n + 2] π-antiaromatic in the first ¹ππ* states, and proton transfer (either inter- or intramolecularly) helps relieve excited-state antiaromaticity. Computed nucleus-independent chemical shifts (NICS) for several ESPT examples (including excited-state intramolecular proton transfers (ESIPT), biprotonic transfers, dynamic catalyzed transfers, and proton relay transfers) document the important role of excited-state antiaromaticity. o-Salicylic acid undergoes ESPT only in the “antiaromatic” S₁ (¹ππ*) state, but not in the “aromatic” S₂ (¹ππ*) state. Stokes’ shifts of structurally related compounds [e.g., derivatives of 2-(2-hydroxyphenyl)benzoxazole and hydrogen-bonded complexes of 2-aminopyridine with protic substrates] vary depending on the antiaromaticity of the photoinduced tautomers. Remarkably, Baird’s rule predicts the effect of light on hydrogen bond strengths; hydrogen bonds that enhance (and reduce) excited-state antiaromaticity in compounds become weakened (and strengthened) upon photoexcitation.
Baird's rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4 + 2] π-aromatic in the ground state, become [4 + 2] π-antiaromatic in the first ππ* states, and proton transfer (either inter- or intramolecularly) helps relieve excited-state antiaromaticity. Computed nucleus-independent chemical shifts (NICS) for several ESPT examples (including excited-state intramolecular proton transfers (ESIPT), biprotonic transfers, dynamic catalyzed transfers, and proton relay transfers) document the important role of excited-state antiaromaticity. Salicylic acid undergoes ESPT only in the "antiaromatic" S ( ππ*) state, but not in the "aromatic" S ( ππ*) state. Stokes' shifts of structurally related compounds [e.g., derivatives of 2-(2-hydroxyphenyl)benzoxazole and hydrogen-bonded complexes of 2-aminopyridine with protic substrates] vary depending on the antiaromaticity of the photoinduced tautomers. Remarkably, Baird's rule predicts the effect of light on hydrogen bond strengths; hydrogen bonds that enhance (and reduce) excited-state antiaromaticity in compounds become weakened (and strengthened) upon photoexcitation.
Author Karas, Lucas José
Wu, Chia-Hua
Ottosson, Henrik
Wu, Judy I-Chia
Author_xml – sequence: 1
  givenname: Chia-Hua
  surname: Wu
  fullname: Wu, Chia-Hua
– sequence: 2
  givenname: Lucas José
  surname: Karas
  fullname: Karas, Lucas José
– sequence: 3
  givenname: Henrik
  surname: Ottosson
  fullname: Ottosson, Henrik
– sequence: 4
  givenname: Judy I-Chia
  surname: Wu
  fullname: Wu, Judy I-Chia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31554699$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-396721$$DView record from Swedish Publication Index
BookMark eNpdkTtvFDEUhS0URDaBmgo0Eg1FJvH70SBFSwhIkWiA1vJ67wSvZuzF9gTy7_Fqw0KoXNzvnOtzzwk6iikCQi8JPidYsYttdOWcGKwFkYTIJ2hBsCG95AYfoQXGVPWaU36MTkrZYIyN0PgZOmZECC6NWaDl1S8fKqz7Ul2FbptTTbGr2cUyQO4yjAHuoHQu1uBymlwNjb_vQuymNIKfRyjP0dPBjQVePLyn6OuHqy_Lj_3N5-tPy8ub3rdltadesoENAxCnvPcKwMCKSgocUyBi3WII47FfYa1Xfm2I1446Tg1x2DUtO0Vne9_yE7bzym5zmFy-t8kF-z58u7Qp39p5tsxIRUnD3-3xxk6w9hBbrPGR6vEkhu_2Nt1ZqbQRQjaDtw8GOf2YoVQ7heJhHF2ENBdLqdGE83bShr75D92kOcd2DUsZZopgwncBLvaUz6mUDMPhMwTbXZ9216f922dTvP43w4H_U2ADXu2BTakpH-ZUaqGMouw3dsapXw
CitedBy_id crossref_primary_10_1002_chem_202301540
crossref_primary_10_1021_acs_joc_2c00818
crossref_primary_10_1002_chem_202005248
crossref_primary_10_1016_j_dyepig_2024_112020
crossref_primary_10_1039_D4SC00642A
crossref_primary_10_1002_chem_202303724
crossref_primary_10_1002_asia_202000528
crossref_primary_10_1016_j_jhazmat_2020_124811
crossref_primary_10_1039_D1CS00742D
crossref_primary_10_1021_acs_jpca_9b11375
crossref_primary_10_1002_cphc_202400069
crossref_primary_10_1039_D2CP00494A
crossref_primary_10_1038_s41467_021_25677_2
crossref_primary_10_1021_acs_orglett_0c02343
crossref_primary_10_1016_j_jphotochem_2022_113798
crossref_primary_10_1007_s43630_021_00056_4
crossref_primary_10_1039_D0CC02952A
crossref_primary_10_1021_jacs_0c06327
crossref_primary_10_1039_D0RA05802E
crossref_primary_10_1109_TIM_2023_3235424
crossref_primary_10_1002_anie_202100261
crossref_primary_10_1021_acs_joc_2c01172
crossref_primary_10_1021_acs_jpca_2c03668
crossref_primary_10_1039_D1CP01441B
crossref_primary_10_1021_acs_jpca_1c10165
crossref_primary_10_1021_acsomega_1c04051
crossref_primary_10_1080_00268976_2023_2268191
crossref_primary_10_1021_acs_jpcb_3c05519
crossref_primary_10_1002_asia_202200244
crossref_primary_10_1021_acs_accounts_3c00605
crossref_primary_10_1039_D3CP00842H
crossref_primary_10_1002_aoc_7138
crossref_primary_10_3390_molecules26247460
crossref_primary_10_1002_ange_202100261
crossref_primary_10_1002_asia_202000900
crossref_primary_10_1002_anie_202302107
crossref_primary_10_1002_chem_202300519
crossref_primary_10_1002_chem_202401041
crossref_primary_10_1039_D1CP05294B
crossref_primary_10_1021_jacs_1c09324
crossref_primary_10_1021_acs_joc_9b03472
crossref_primary_10_1002_cphc_202200045
crossref_primary_10_1016_j_saa_2022_122142
crossref_primary_10_1002_ange_202302107
crossref_primary_10_1002_bkcs_12483
crossref_primary_10_1021_jacs_0c05611
crossref_primary_10_3390_molecules26051475
crossref_primary_10_1002_wcms_1477
crossref_primary_10_1002_adsc_202300257
crossref_primary_10_3390_molecules28155704
crossref_primary_10_1002_chem_202200472
crossref_primary_10_1039_D0SC02294B
crossref_primary_10_1039_D4OB00397G
crossref_primary_10_1016_j_jphotochem_2024_115872
crossref_primary_10_1039_D3CC04182D
crossref_primary_10_1021_acs_jpcb_2c04397
crossref_primary_10_1039_D1NJ00207D
crossref_primary_10_1002_chem_202203748
crossref_primary_10_1021_acs_jpclett_2c01025
crossref_primary_10_1002_jccs_202300241
Cites_doi 10.1039/c1cp22239b
10.1039/C9CP02050K
10.1021/j150535a033
10.1039/C6CP05236C
10.1038/nchem.1518
10.1021/ja00316a004
10.1021/acs.joc.6b02460
10.1021/j100408a003
10.1021/cr300471v
10.1021/j100312a036
10.1021/ja00769a025
10.1016/0301-0104(89)80043-6
10.1126/science.1091708
10.1021/cr030088
10.1021/ja01014a086
10.1016/0584-8539(86)80213-6
10.1038/nchem.2233
10.1021/ar0200549
10.1016/1010-6030(93)80158-6
10.1073/pnas.63.2.253
10.1002/(SICI)1521-3773(19980803)37:13/14<1945::AID-ANIE1945>3.0.CO;2-E
10.1021/acs.accounts.7b00629
10.1039/B313383B
10.1039/c1cp21812c
10.1039/f29898501539
10.1021/jp8037335
10.1016/j.jphotochem.2015.08.013
10.1016/0009-2614(92)85699-B
10.1016/1010-6030(93)80157-5
10.1021/ja00536a029
10.1021/ja00292a018
10.1021/ja00993a023
10.1016/0009-2614(82)83694-4
10.1021/j150620a009
10.1039/f29868202379
10.1021/ja00820a045
10.1016/0009-2614(79)87221-8
10.1021/ja00413a026
10.1039/C5CS00057B
10.1021/jp9844765
10.1021/j100852a021
10.1016/S1010-6030(99)00025-8
10.1039/C5CP03699B
10.1246/bcsj.51.1788
10.1126/science.1104038
10.1021/jp012761
10.1002/adma.201102046
10.1021/acs.jpca.6b11684
ContentType Journal Article
Copyright Copyright National Academy of Sciences Oct 8, 2019
2019
Copyright_xml – notice: Copyright National Academy of Sciences Oct 8, 2019
– notice: 2019
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ADTPV
AOWAS
DF2
DOI 10.1073/pnas.1908516116
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef

Virology and AIDS Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 20308
ExternalDocumentID oai_DiVA_org_uu_396721
10_1073_pnas_1908516116
31554699
26857972
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM133548
– fundername: Vetenskapsrådet (VR)
  grantid: 2015-04538
– fundername: National Science Foundation (NSF)
  grantid: CHE-1751370
– fundername: National Science Foundation (NSF)
  grantid: MRI-1531814
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADACV
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
.GJ
3O-
692
6TJ
79B
AAYJJ
ACKIV
ADTPV
AOWAS
AS~
DF2
F20
HGD
HQ3
HTVGU
JSODD
MVM
NEJ
NHB
P-O
VOH
WHG
ZCG
ID FETCH-LOGICAL-c546t-2c63f3ffe1a7ccc7ee9eb262e402e15d19059c0cb088bcd91c8a2a4291a0ac633
IEDL.DBID RPM
ISSN 0027-8424
1091-6490
IngestDate Sat Aug 24 00:25:36 EDT 2024
Tue Sep 17 21:11:38 EDT 2024
Fri Oct 25 05:19:26 EDT 2024
Thu Oct 10 17:30:14 EDT 2024
Fri Dec 06 02:51:15 EST 2024
Sat Sep 28 08:30:56 EDT 2024
Tue Dec 10 23:54:43 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 41
Keywords antiaromaticity
hydrogen bonding
Baird’s rule
excited-state proton transfer
aromaticity
Language English
License Published under the PNAS license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c546t-2c63f3ffe1a7ccc7ee9eb262e402e15d19059c0cb088bcd91c8a2a4291a0ac633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: C.-H.W. and J.I.W. designed research; C.-H.W. and L.J.K. performed research; C.-H.W., L.J.K., H.O., and J.I.W. analyzed data and made intellectual contributions to the development of the paper; and J.I.W. wrote the paper.
Edited by Kendall N. Houk, University of California, Los Angeles, CA, and approved August 28, 2019 (received for review May 20, 2019)
ORCID 0000-0003-0590-5290
OpenAccessLink https://www.pnas.org/content/pnas/116/41/20303.full.pdf
PMID 31554699
PQID 2303710143
PQPubID 42026
PageCount 6
ParticipantIDs swepub_primary_oai_DiVA_org_uu_396721
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6789556
proquest_miscellaneous_2298144580
proquest_journals_2303710143
crossref_primary_10_1073_pnas_1908516116
pubmed_primary_31554699
jstor_primary_26857972
PublicationCentury 2000
PublicationDate 2019-10-08
PublicationDateYYYYMMDD 2019-10-08
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
Publisher National Academy of Sciences
Publisher_xml – sequence: 0
  name: National Academy of Sciences
– name: National Academy of Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
Weller A. (e_1_3_3_2_2) 1961; 1
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
Weller A. (e_1_3_3_1_2) 1952; 56
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_29_2
  doi: 10.1039/c1cp22239b
– ident: e_1_3_3_42_2
  doi: 10.1039/C9CP02050K
– ident: e_1_3_3_45_2
  doi: 10.1021/j150535a033
– ident: e_1_3_3_20_2
  doi: 10.1039/C6CP05236C
– ident: e_1_3_3_33_2
  doi: 10.1038/nchem.1518
– ident: e_1_3_3_38_2
  doi: 10.1021/ja00316a004
– ident: e_1_3_3_43_2
  doi: 10.1021/acs.joc.6b02460
– ident: e_1_3_3_9_2
  doi: 10.1021/j100408a003
– ident: e_1_3_3_32_2
  doi: 10.1021/cr300471v
– ident: e_1_3_3_4_2
  doi: 10.1021/j100312a036
– ident: e_1_3_3_25_2
  doi: 10.1021/ja00769a025
– ident: e_1_3_3_5_2
  doi: 10.1016/0301-0104(89)80043-6
– ident: e_1_3_3_39_2
  doi: 10.1126/science.1091708
– ident: e_1_3_3_40_2
  doi: 10.1021/cr030088
– ident: e_1_3_3_49_2
  doi: 10.1021/ja01014a086
– ident: e_1_3_3_10_2
  doi: 10.1016/0584-8539(86)80213-6
– ident: e_1_3_3_30_2
  doi: 10.1038/nchem.2233
– ident: e_1_3_3_6_2
  doi: 10.1021/ar0200549
– ident: e_1_3_3_18_2
  doi: 10.1016/1010-6030(93)80158-6
– ident: e_1_3_3_7_2
  doi: 10.1073/pnas.63.2.253
– ident: e_1_3_3_27_2
  doi: 10.1002/(SICI)1521-3773(19980803)37:13/14<1945::AID-ANIE1945>3.0.CO;2-E
– ident: e_1_3_3_31_2
  doi: 10.1021/acs.accounts.7b00629
– ident: e_1_3_3_41_2
  doi: 10.1039/B313383B
– ident: e_1_3_3_48_2
  doi: 10.1039/c1cp21812c
– ident: e_1_3_3_11_2
  doi: 10.1039/f29898501539
– ident: e_1_3_3_28_2
  doi: 10.1021/jp8037335
– ident: e_1_3_3_23_2
  doi: 10.1016/j.jphotochem.2015.08.013
– ident: e_1_3_3_17_2
  doi: 10.1016/0009-2614(92)85699-B
– volume: 56
  start-page: 662
  year: 1952
  ident: e_1_3_3_1_2
  article-title: Quantitative untersuchungen der fluoreszenzumwandlung bei naphtholen
  publication-title: Elektrochemie
  contributor:
    fullname: Weller A.
– ident: e_1_3_3_13_2
  doi: 10.1016/1010-6030(93)80157-5
– ident: e_1_3_3_37_2
  doi: 10.1021/ja00536a029
– ident: e_1_3_3_16_2
  doi: 10.1021/ja00292a018
– ident: e_1_3_3_50_2
  doi: 10.1021/ja00993a023
– ident: e_1_3_3_8_2
  doi: 10.1016/0009-2614(82)83694-4
– ident: e_1_3_3_3_2
  doi: 10.1021/j150620a009
– ident: e_1_3_3_35_2
  doi: 10.1039/f29868202379
– volume: 1
  start-page: 187
  year: 1961
  ident: e_1_3_3_2_2
  article-title: Fast reactions of excited molecules
  publication-title: Prog. React. Kinet.
  contributor:
    fullname: Weller A.
– ident: e_1_3_3_36_2
  doi: 10.1021/ja00820a045
– ident: e_1_3_3_14_2
  doi: 10.1016/0009-2614(79)87221-8
– ident: e_1_3_3_15_2
  doi: 10.1021/ja00413a026
– ident: e_1_3_3_34_2
  doi: 10.1039/C5CS00057B
– ident: e_1_3_3_21_2
  doi: 10.1021/jp9844765
– ident: e_1_3_3_46_2
  doi: 10.1021/j100852a021
– ident: e_1_3_3_44_2
  doi: 10.1016/S1010-6030(99)00025-8
– ident: e_1_3_3_22_2
  doi: 10.1039/C5CP03699B
– ident: e_1_3_3_26_2
  doi: 10.1246/bcsj.51.1788
– ident: e_1_3_3_47_2
  doi: 10.1126/science.1104038
– ident: e_1_3_3_12_2
  doi: 10.1021/jp012761
– ident: e_1_3_3_19_2
  doi: 10.1002/adma.201102046
– ident: e_1_3_3_24_2
  doi: 10.1021/acs.jpca.6b11684
SSID ssj0009580
Score 2.5780885
Snippet Baird’s rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4n + 2]...
Baird's rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4 + 2]...
Excited-state proton transfer (ESPT) is universally recognized as a reaction that relaxes the energy of a photoexcited organic compound. It is commonly found...
Baird's rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4n + 2]...
Baird’s rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4 n + 2]...
SourceID swepub
pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 20303
SubjectTerms antiaromaticity
Aromatic compounds
aromaticity
Baird's rule
Bonding strength
Chemical bonds
Electrons
Excitation
excited-state proton transfer
Hydrogen
Hydrogen bonding
Hydrogen bonds
Hydroxyquinolines - chemistry
Light effects
Models, Molecular
Molecular Structure
Organic chemistry
Organic compounds
Photoexcitation
Physical Sciences
Protons
Quantum Theory
Salicylic acid
Salicylic Acid - chemistry
Substrates
Tautomers
Title Excited-state proton transfer relieves antiaromaticity in molecules
URI https://www.jstor.org/stable/26857972
https://www.ncbi.nlm.nih.gov/pubmed/31554699
https://www.proquest.com/docview/2303710143
https://search.proquest.com/docview/2298144580
https://pubmed.ncbi.nlm.nih.gov/PMC6789556
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-396721
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB21PXFBFCgEShUkkMohu7Ed28mxWlpVSEUcKOrNsr0ORGKdVXYX9ed37HxUKzhxtp2PN7bnjTx-A_ChpFqYQtIsrzXPCmJJpnNbZUtmjC6YIS5WUbj5Kq5viy93_O4A-HgXJibtW9PM_O_VzDe_Ym7lemXnY57Y_NvNAjfYinMxP4RDdL9jiD4p7Zb9vROK229Bi1HPR7L52uvNDD0gsgxBSKhexII7FVH49dEr9YmJ_6Kcf2dO7umLRp909QyeDmQyveg_-hgOnH8Ox8Ny3aTng6b0pxewuLy3gVxm8QJRGtQZWp9uI2t1Xdo5pKJ_cAji3OiujTquyM_TxqervoCu27yE26vL74vrbKifkFn8qW1GrWA1q2tHtLTWSucqjKMFdRgzOsKXiASvbG4N7jTGLitiS001Oiiic41j2Qkc-da715DWZmmtE0wTQeNJa-mQerCiJpIZJvIEzkf81LqXyVDxeFsyFVBXj6gncBLxnfpRUXJZSZrA6Qi4GhbSRmGExGSoJ8wSeD814xII5xrau3aHfWhVYlyIdk_gVW-f6eGjgROQe5abOgR57f0WnHVRZnuYZQl87G28N-Rz8-NCtd1PtdspVgmMo9_89xvewhOkYVWfWXgKR9tu594h1dmas-Bo-Fmc4A82Yv83
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcoBL1QKFtAWCBFI5ZDe2Ezs-VkurBboVhxb1Ztlep0TqJqvsbsXPZ-J8VCs4cbadjze25408fgPwMaOam0TQKM51GiXEkkjHVkZzZoxOmCHOV1GYXfHpTfLtNr3dgbS_C-OT9q0pRuX9YlQWv3xu5XJhx32e2PjHbIIbrExTPn4CT1MmJOmD9EFrN2tvnlDcgBOa9Io-go2XpV6N0Aciz-CENPWLWONQuZd-ffRLbWriv0jn37mTWwqj3itd7MNeRyfDs_azD2DHlS_goFuwq_C0U5X-_BIm579tQy8jf4UobPQZqjJce97q6rB2SEYfcAgiXei68kquyNDDogwXbQldt3oFNxfn15Np1FVQiCz-1DqilrOc5bkjWlhrhXMSI2lOHUaNjqRzRCKVNrYG9xpj55LYTFONLoroWONYdgi7ZVW6NxDmZm6t40wTTv1Za-aQfLAkJ4IZxuMATnv81LIVylD-gFsw1aCuHlEP4NDjO_SjPEuFFDSAkx5w1S2llcIYiYmmojAL4MPQjIugOdnQpas22IfKDCNDtHsAr1v7DA_vDRyA2LLc0KER2N5uwXnnhba7eRbAp9bGW0O-FD_PVFXfqc1GMckxkj767ze8h2fT69mluvx69f0YniMpk22e4QnsruuNe4vEZ23e-Wn-B8OYAbU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAXRIFCoECQQCqHbGI7sZNjte2qPFr1QFFvlu04JRLrrLK7iJ_PxHmUFZw4285jZuz5RjP-BuBdThXXqaBRUqksSokhkUpMEZVMa5UyTazvonB-wc-u0k_X2fUfrb580b7R9cz9WM5c_d3XVq6WJh7rxOLL8zkesEWW8XhVVvFduJcxNLIxUJ_4dvP-9gnFQzil6cjqI1i8cmo9Qz-IWIMT0vUwYp1T5Z7-9dY39eWJ_wKef9dP7rCMes-0eAQPB0gZHvefvg93rHsM-8OmXYdHA7P0hycwP_1lOogZ-WtEYcfR0Lhw47GrbcPWIiD9iUtQ2rVqG8_miig9rF247Nvo2vVTuFqcfp2fRUMXhcjgT20iajirWFVZooQxRlhbYDTNqcXI0ZKsRElkhUmMxvNGm7IgJldUoZsiKlG4lh3AnmucfQ5hpUtjLGeKcOrzrblFAMLSigimGU8COBrlJ1c9WYb0SW7BZCd1eSv1AA68fKd5lOeZKAQN4HAUuBy201pinMRE11WYBfB2GsaN0GU3lLPNFufQIsfoEPUewLNeP9PDRwUHIHY0N03oSLZ3R9D2PNn2YGsBvO91vLPkpP52LJv2Rm63khUco-kX__2GN3D_8mQhv3y8-PwSHiAuK_pSw0PY27Rb-wqxz0a_9lb-G3h8Asg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excited-state+proton+transfer+relieves+antiaromaticity+in+molecules&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wu%2C+Chia-Hua&rft.au=Karas%2C+Lucas+Jos%C3%A9&rft.au=Ottosson%2C+Henrik&rft.au=Wu%2C+Judy+I-Chia&rft.date=2019-10-08&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=41&rft.spage=20303&rft.epage=20308&rft_id=info:doi/10.1073%2Fpnas.1908516116&rft_id=info%3Apmid%2F31554699&rft.externalDBID=PMC6789556
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon