Excited-state proton transfer relieves antiaromaticity in molecules
Baird’s rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4n + 2] π-aromatic in the ground state, become [4n + 2] π-antiaromatic in the first ¹ππ* states, and proton transfer (either inter- or intramolecularly) hel...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 116; no. 41; pp. 20303 - 20308 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
08.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Baird’s rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4n + 2] π-aromatic in the ground state, become [4n + 2] π-antiaromatic in the first ¹ππ* states, and proton transfer (either inter- or intramolecularly) helps relieve excited-state antiaromaticity. Computed nucleus-independent chemical shifts (NICS) for several ESPT examples (including excited-state intramolecular proton transfers (ESIPT), biprotonic transfers, dynamic catalyzed transfers, and proton relay transfers) document the important role of excited-state antiaromaticity. o-Salicylic acid undergoes ESPT only in the “antiaromatic” S₁ (¹ππ*) state, but not in the “aromatic” S₂ (¹ππ*) state. Stokes’ shifts of structurally related compounds [e.g., derivatives of 2-(2-hydroxyphenyl)benzoxazole and hydrogen-bonded complexes of 2-aminopyridine with protic substrates] vary depending on the antiaromaticity of the photoinduced tautomers. Remarkably, Baird’s rule predicts the effect of light on hydrogen bond strengths; hydrogen bonds that enhance (and reduce) excited-state antiaromaticity in compounds become weakened (and strengthened) upon photoexcitation. |
---|---|
AbstractList | Excited-state proton transfer (ESPT) is universally recognized as a reaction that relaxes the energy of a photoexcited organic compound. It is commonly found in many light-driven processes. Here we identify decisive principles underlying why and when ESPT happens. Our computational investigation of prototypical ESPT reactions finds that the occurrence of ESPT can be explained by an electron-counting rule—Baird’s rule, which remains largely ignored despite having a near–50-y-old history. We emphasize that this surprising connection not only explains the mechanistic principle of ESPT reactions, but it also predicts whether hydrogen bonding interactions that form within and between organic compounds might strengthen or weaken when irradiated by light. Recognizing this relationship has tremendous interpretive merit for organic photochemistry.
Baird’s rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4
n
+ 2] π-aromatic in the ground state, become [4
n
+ 2] π-antiaromatic in the first
1
ππ* states, and proton transfer (either inter- or intramolecularly) helps relieve excited-state antiaromaticity. Computed nucleus-independent chemical shifts (NICS) for several ESPT examples (including excited-state intramolecular proton transfers (ESIPT), biprotonic transfers, dynamic catalyzed transfers, and proton relay transfers) document the important role of excited-state antiaromaticity.
o-
Salicylic acid undergoes ESPT only in the “antiaromatic” S
1
(
1
ππ*) state, but not in the “aromatic” S
2
(
1
ππ*) state. Stokes’ shifts of structurally related compounds [e.g., derivatives of 2-(2-hydroxyphenyl)benzoxazole and hydrogen-bonded complexes of 2-aminopyridine with protic substrates] vary depending on the antiaromaticity of the photoinduced tautomers. Remarkably, Baird’s rule predicts the effect of light on hydrogen bond strengths; hydrogen bonds that enhance (and reduce) excited-state antiaromaticity in compounds become weakened (and strengthened) upon photoexcitation. Baird’s rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4 n + 2] π-aromatic in the ground state, become [4 n + 2] π-antiaromatic in the first 1 ππ* states, and proton transfer (either inter- or intramolecularly) helps relieve excited-state antiaromaticity. Computed nucleus-independent chemical shifts (NICS) for several ESPT examples (including excited-state intramolecular proton transfers (ESIPT), biprotonic transfers, dynamic catalyzed transfers, and proton relay transfers) document the important role of excited-state antiaromaticity. o- Salicylic acid undergoes ESPT only in the “antiaromatic” S 1 ( 1 ππ*) state, but not in the “aromatic” S 2 ( 1 ππ*) state. Stokes’ shifts of structurally related compounds [e.g., derivatives of 2-(2-hydroxyphenyl)benzoxazole and hydrogen-bonded complexes of 2-aminopyridine with protic substrates] vary depending on the antiaromaticity of the photoinduced tautomers. Remarkably, Baird’s rule predicts the effect of light on hydrogen bond strengths; hydrogen bonds that enhance (and reduce) excited-state antiaromaticity in compounds become weakened (and strengthened) upon photoexcitation. Baird's rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4n + 2] π-aromatic in the ground state, become [4n + 2] π-antiaromatic in the first 1ππ* states, and proton transfer (either inter- or intramolecularly) helps relieve excited-state antiaromaticity. Computed nucleus-independent chemical shifts (NICS) for several ESPT examples (including excited-state intramolecular proton transfers (ESIPT), biprotonic transfers, dynamic catalyzed transfers, and proton relay transfers) document the important role of excited-state antiaromaticity. o-Salicylic acid undergoes ESPT only in the "antiaromatic" S1 (1ππ*) state, but not in the "aromatic" S2 (1ππ*) state. Stokes' shifts of structurally related compounds [e.g., derivatives of 2-(2-hydroxyphenyl)benzoxazole and hydrogen-bonded complexes of 2-aminopyridine with protic substrates] vary depending on the antiaromaticity of the photoinduced tautomers. Remarkably, Baird's rule predicts the effect of light on hydrogen bond strengths; hydrogen bonds that enhance (and reduce) excited-state antiaromaticity in compounds become weakened (and strengthened) upon photoexcitation. Baird’s rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4n + 2] π-aromatic in the ground state, become [4n + 2] π-antiaromatic in the first ¹ππ* states, and proton transfer (either inter- or intramolecularly) helps relieve excited-state antiaromaticity. Computed nucleus-independent chemical shifts (NICS) for several ESPT examples (including excited-state intramolecular proton transfers (ESIPT), biprotonic transfers, dynamic catalyzed transfers, and proton relay transfers) document the important role of excited-state antiaromaticity. o-Salicylic acid undergoes ESPT only in the “antiaromatic” S₁ (¹ππ*) state, but not in the “aromatic” S₂ (¹ππ*) state. Stokes’ shifts of structurally related compounds [e.g., derivatives of 2-(2-hydroxyphenyl)benzoxazole and hydrogen-bonded complexes of 2-aminopyridine with protic substrates] vary depending on the antiaromaticity of the photoinduced tautomers. Remarkably, Baird’s rule predicts the effect of light on hydrogen bond strengths; hydrogen bonds that enhance (and reduce) excited-state antiaromaticity in compounds become weakened (and strengthened) upon photoexcitation. Baird's rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4 + 2] π-aromatic in the ground state, become [4 + 2] π-antiaromatic in the first ππ* states, and proton transfer (either inter- or intramolecularly) helps relieve excited-state antiaromaticity. Computed nucleus-independent chemical shifts (NICS) for several ESPT examples (including excited-state intramolecular proton transfers (ESIPT), biprotonic transfers, dynamic catalyzed transfers, and proton relay transfers) document the important role of excited-state antiaromaticity. Salicylic acid undergoes ESPT only in the "antiaromatic" S ( ππ*) state, but not in the "aromatic" S ( ππ*) state. Stokes' shifts of structurally related compounds [e.g., derivatives of 2-(2-hydroxyphenyl)benzoxazole and hydrogen-bonded complexes of 2-aminopyridine with protic substrates] vary depending on the antiaromaticity of the photoinduced tautomers. Remarkably, Baird's rule predicts the effect of light on hydrogen bond strengths; hydrogen bonds that enhance (and reduce) excited-state antiaromaticity in compounds become weakened (and strengthened) upon photoexcitation. |
Author | Karas, Lucas José Wu, Chia-Hua Ottosson, Henrik Wu, Judy I-Chia |
Author_xml | – sequence: 1 givenname: Chia-Hua surname: Wu fullname: Wu, Chia-Hua – sequence: 2 givenname: Lucas José surname: Karas fullname: Karas, Lucas José – sequence: 3 givenname: Henrik surname: Ottosson fullname: Ottosson, Henrik – sequence: 4 givenname: Judy I-Chia surname: Wu fullname: Wu, Judy I-Chia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31554699$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-396721$$DView record from Swedish Publication Index |
BookMark | eNpdkTtvFDEUhS0URDaBmgo0Eg1FJvH70SBFSwhIkWiA1vJ67wSvZuzF9gTy7_Fqw0KoXNzvnOtzzwk6iikCQi8JPidYsYttdOWcGKwFkYTIJ2hBsCG95AYfoQXGVPWaU36MTkrZYIyN0PgZOmZECC6NWaDl1S8fKqz7Ul2FbptTTbGr2cUyQO4yjAHuoHQu1uBymlwNjb_vQuymNIKfRyjP0dPBjQVePLyn6OuHqy_Lj_3N5-tPy8ub3rdltadesoENAxCnvPcKwMCKSgocUyBi3WII47FfYa1Xfm2I1446Tg1x2DUtO0Vne9_yE7bzym5zmFy-t8kF-z58u7Qp39p5tsxIRUnD3-3xxk6w9hBbrPGR6vEkhu_2Nt1ZqbQRQjaDtw8GOf2YoVQ7heJhHF2ENBdLqdGE83bShr75D92kOcd2DUsZZopgwncBLvaUz6mUDMPhMwTbXZ9216f922dTvP43w4H_U2ADXu2BTakpH-ZUaqGMouw3dsapXw |
CitedBy_id | crossref_primary_10_1002_chem_202301540 crossref_primary_10_1021_acs_joc_2c00818 crossref_primary_10_1002_chem_202005248 crossref_primary_10_1016_j_dyepig_2024_112020 crossref_primary_10_1039_D4SC00642A crossref_primary_10_1002_chem_202303724 crossref_primary_10_1002_asia_202000528 crossref_primary_10_1016_j_jhazmat_2020_124811 crossref_primary_10_1039_D1CS00742D crossref_primary_10_1021_acs_jpca_9b11375 crossref_primary_10_1002_cphc_202400069 crossref_primary_10_1039_D2CP00494A crossref_primary_10_1038_s41467_021_25677_2 crossref_primary_10_1021_acs_orglett_0c02343 crossref_primary_10_1016_j_jphotochem_2022_113798 crossref_primary_10_1007_s43630_021_00056_4 crossref_primary_10_1039_D0CC02952A crossref_primary_10_1021_jacs_0c06327 crossref_primary_10_1039_D0RA05802E crossref_primary_10_1109_TIM_2023_3235424 crossref_primary_10_1002_anie_202100261 crossref_primary_10_1021_acs_joc_2c01172 crossref_primary_10_1021_acs_jpca_2c03668 crossref_primary_10_1039_D1CP01441B crossref_primary_10_1021_acs_jpca_1c10165 crossref_primary_10_1021_acsomega_1c04051 crossref_primary_10_1080_00268976_2023_2268191 crossref_primary_10_1021_acs_jpcb_3c05519 crossref_primary_10_1002_asia_202200244 crossref_primary_10_1021_acs_accounts_3c00605 crossref_primary_10_1039_D3CP00842H crossref_primary_10_1002_aoc_7138 crossref_primary_10_3390_molecules26247460 crossref_primary_10_1002_ange_202100261 crossref_primary_10_1002_asia_202000900 crossref_primary_10_1002_anie_202302107 crossref_primary_10_1002_chem_202300519 crossref_primary_10_1002_chem_202401041 crossref_primary_10_1039_D1CP05294B crossref_primary_10_1021_jacs_1c09324 crossref_primary_10_1021_acs_joc_9b03472 crossref_primary_10_1002_cphc_202200045 crossref_primary_10_1016_j_saa_2022_122142 crossref_primary_10_1002_ange_202302107 crossref_primary_10_1002_bkcs_12483 crossref_primary_10_1021_jacs_0c05611 crossref_primary_10_3390_molecules26051475 crossref_primary_10_1002_wcms_1477 crossref_primary_10_1002_adsc_202300257 crossref_primary_10_3390_molecules28155704 crossref_primary_10_1002_chem_202200472 crossref_primary_10_1039_D0SC02294B crossref_primary_10_1039_D4OB00397G crossref_primary_10_1016_j_jphotochem_2024_115872 crossref_primary_10_1039_D3CC04182D crossref_primary_10_1021_acs_jpcb_2c04397 crossref_primary_10_1039_D1NJ00207D crossref_primary_10_1002_chem_202203748 crossref_primary_10_1021_acs_jpclett_2c01025 crossref_primary_10_1002_jccs_202300241 |
Cites_doi | 10.1039/c1cp22239b 10.1039/C9CP02050K 10.1021/j150535a033 10.1039/C6CP05236C 10.1038/nchem.1518 10.1021/ja00316a004 10.1021/acs.joc.6b02460 10.1021/j100408a003 10.1021/cr300471v 10.1021/j100312a036 10.1021/ja00769a025 10.1016/0301-0104(89)80043-6 10.1126/science.1091708 10.1021/cr030088 10.1021/ja01014a086 10.1016/0584-8539(86)80213-6 10.1038/nchem.2233 10.1021/ar0200549 10.1016/1010-6030(93)80158-6 10.1073/pnas.63.2.253 10.1002/(SICI)1521-3773(19980803)37:13/14<1945::AID-ANIE1945>3.0.CO;2-E 10.1021/acs.accounts.7b00629 10.1039/B313383B 10.1039/c1cp21812c 10.1039/f29898501539 10.1021/jp8037335 10.1016/j.jphotochem.2015.08.013 10.1016/0009-2614(92)85699-B 10.1016/1010-6030(93)80157-5 10.1021/ja00536a029 10.1021/ja00292a018 10.1021/ja00993a023 10.1016/0009-2614(82)83694-4 10.1021/j150620a009 10.1039/f29868202379 10.1021/ja00820a045 10.1016/0009-2614(79)87221-8 10.1021/ja00413a026 10.1039/C5CS00057B 10.1021/jp9844765 10.1021/j100852a021 10.1016/S1010-6030(99)00025-8 10.1039/C5CP03699B 10.1246/bcsj.51.1788 10.1126/science.1104038 10.1021/jp012761 10.1002/adma.201102046 10.1021/acs.jpca.6b11684 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Oct 8, 2019 2019 |
Copyright_xml | – notice: Copyright National Academy of Sciences Oct 8, 2019 – notice: 2019 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM ADTPV AOWAS DF2 |
DOI | 10.1073/pnas.1908516116 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Uppsala universitet |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 20308 |
ExternalDocumentID | oai_DiVA_org_uu_396721 10_1073_pnas_1908516116 31554699 26857972 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM133548 – fundername: Vetenskapsrådet (VR) grantid: 2015-04538 – fundername: National Science Foundation (NSF) grantid: CHE-1751370 – fundername: National Science Foundation (NSF) grantid: MRI-1531814 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADACV ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DOOOF DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM .GJ 3O- 692 6TJ 79B AAYJJ ACKIV ADTPV AOWAS AS~ DF2 F20 HGD HQ3 HTVGU JSODD MVM NEJ NHB P-O VOH WHG ZCG |
ID | FETCH-LOGICAL-c546t-2c63f3ffe1a7ccc7ee9eb262e402e15d19059c0cb088bcd91c8a2a4291a0ac633 |
IEDL.DBID | RPM |
ISSN | 0027-8424 1091-6490 |
IngestDate | Sat Aug 24 00:25:36 EDT 2024 Tue Sep 17 21:11:38 EDT 2024 Fri Oct 25 05:19:26 EDT 2024 Thu Oct 10 17:30:14 EDT 2024 Fri Dec 06 02:51:15 EST 2024 Sat Sep 28 08:30:56 EDT 2024 Tue Dec 10 23:54:43 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Keywords | antiaromaticity hydrogen bonding Baird’s rule excited-state proton transfer aromaticity |
Language | English |
License | Published under the PNAS license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c546t-2c63f3ffe1a7ccc7ee9eb262e402e15d19059c0cb088bcd91c8a2a4291a0ac633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: C.-H.W. and J.I.W. designed research; C.-H.W. and L.J.K. performed research; C.-H.W., L.J.K., H.O., and J.I.W. analyzed data and made intellectual contributions to the development of the paper; and J.I.W. wrote the paper. Edited by Kendall N. Houk, University of California, Los Angeles, CA, and approved August 28, 2019 (received for review May 20, 2019) |
ORCID | 0000-0003-0590-5290 |
OpenAccessLink | https://www.pnas.org/content/pnas/116/41/20303.full.pdf |
PMID | 31554699 |
PQID | 2303710143 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_396721 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6789556 proquest_miscellaneous_2298144580 proquest_journals_2303710143 crossref_primary_10_1073_pnas_1908516116 pubmed_primary_31554699 jstor_primary_26857972 |
PublicationCentury | 2000 |
PublicationDate | 2019-10-08 |
PublicationDateYYYYMMDD | 2019-10-08 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2019 |
Publisher | National Academy of Sciences |
Publisher_xml | – sequence: 0 name: National Academy of Sciences – name: National Academy of Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 Weller A. (e_1_3_3_2_2) 1961; 1 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 Weller A. (e_1_3_3_1_2) 1952; 56 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_29_2 doi: 10.1039/c1cp22239b – ident: e_1_3_3_42_2 doi: 10.1039/C9CP02050K – ident: e_1_3_3_45_2 doi: 10.1021/j150535a033 – ident: e_1_3_3_20_2 doi: 10.1039/C6CP05236C – ident: e_1_3_3_33_2 doi: 10.1038/nchem.1518 – ident: e_1_3_3_38_2 doi: 10.1021/ja00316a004 – ident: e_1_3_3_43_2 doi: 10.1021/acs.joc.6b02460 – ident: e_1_3_3_9_2 doi: 10.1021/j100408a003 – ident: e_1_3_3_32_2 doi: 10.1021/cr300471v – ident: e_1_3_3_4_2 doi: 10.1021/j100312a036 – ident: e_1_3_3_25_2 doi: 10.1021/ja00769a025 – ident: e_1_3_3_5_2 doi: 10.1016/0301-0104(89)80043-6 – ident: e_1_3_3_39_2 doi: 10.1126/science.1091708 – ident: e_1_3_3_40_2 doi: 10.1021/cr030088 – ident: e_1_3_3_49_2 doi: 10.1021/ja01014a086 – ident: e_1_3_3_10_2 doi: 10.1016/0584-8539(86)80213-6 – ident: e_1_3_3_30_2 doi: 10.1038/nchem.2233 – ident: e_1_3_3_6_2 doi: 10.1021/ar0200549 – ident: e_1_3_3_18_2 doi: 10.1016/1010-6030(93)80158-6 – ident: e_1_3_3_7_2 doi: 10.1073/pnas.63.2.253 – ident: e_1_3_3_27_2 doi: 10.1002/(SICI)1521-3773(19980803)37:13/14<1945::AID-ANIE1945>3.0.CO;2-E – ident: e_1_3_3_31_2 doi: 10.1021/acs.accounts.7b00629 – ident: e_1_3_3_41_2 doi: 10.1039/B313383B – ident: e_1_3_3_48_2 doi: 10.1039/c1cp21812c – ident: e_1_3_3_11_2 doi: 10.1039/f29898501539 – ident: e_1_3_3_28_2 doi: 10.1021/jp8037335 – ident: e_1_3_3_23_2 doi: 10.1016/j.jphotochem.2015.08.013 – ident: e_1_3_3_17_2 doi: 10.1016/0009-2614(92)85699-B – volume: 56 start-page: 662 year: 1952 ident: e_1_3_3_1_2 article-title: Quantitative untersuchungen der fluoreszenzumwandlung bei naphtholen publication-title: Elektrochemie contributor: fullname: Weller A. – ident: e_1_3_3_13_2 doi: 10.1016/1010-6030(93)80157-5 – ident: e_1_3_3_37_2 doi: 10.1021/ja00536a029 – ident: e_1_3_3_16_2 doi: 10.1021/ja00292a018 – ident: e_1_3_3_50_2 doi: 10.1021/ja00993a023 – ident: e_1_3_3_8_2 doi: 10.1016/0009-2614(82)83694-4 – ident: e_1_3_3_3_2 doi: 10.1021/j150620a009 – ident: e_1_3_3_35_2 doi: 10.1039/f29868202379 – volume: 1 start-page: 187 year: 1961 ident: e_1_3_3_2_2 article-title: Fast reactions of excited molecules publication-title: Prog. React. Kinet. contributor: fullname: Weller A. – ident: e_1_3_3_36_2 doi: 10.1021/ja00820a045 – ident: e_1_3_3_14_2 doi: 10.1016/0009-2614(79)87221-8 – ident: e_1_3_3_15_2 doi: 10.1021/ja00413a026 – ident: e_1_3_3_34_2 doi: 10.1039/C5CS00057B – ident: e_1_3_3_21_2 doi: 10.1021/jp9844765 – ident: e_1_3_3_46_2 doi: 10.1021/j100852a021 – ident: e_1_3_3_44_2 doi: 10.1016/S1010-6030(99)00025-8 – ident: e_1_3_3_22_2 doi: 10.1039/C5CP03699B – ident: e_1_3_3_26_2 doi: 10.1246/bcsj.51.1788 – ident: e_1_3_3_47_2 doi: 10.1126/science.1104038 – ident: e_1_3_3_12_2 doi: 10.1021/jp012761 – ident: e_1_3_3_19_2 doi: 10.1002/adma.201102046 – ident: e_1_3_3_24_2 doi: 10.1021/acs.jpca.6b11684 |
SSID | ssj0009580 |
Score | 2.5780885 |
Snippet | Baird’s rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4n + 2]... Baird's rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4 + 2]... Excited-state proton transfer (ESPT) is universally recognized as a reaction that relaxes the energy of a photoexcited organic compound. It is commonly found... Baird's rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4n + 2]... Baird’s rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4 n + 2]... |
SourceID | swepub pubmedcentral proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 20303 |
SubjectTerms | antiaromaticity Aromatic compounds aromaticity Baird's rule Bonding strength Chemical bonds Electrons Excitation excited-state proton transfer Hydrogen Hydrogen bonding Hydrogen bonds Hydroxyquinolines - chemistry Light effects Models, Molecular Molecular Structure Organic chemistry Organic compounds Photoexcitation Physical Sciences Protons Quantum Theory Salicylic acid Salicylic Acid - chemistry Substrates Tautomers |
Title | Excited-state proton transfer relieves antiaromaticity in molecules |
URI | https://www.jstor.org/stable/26857972 https://www.ncbi.nlm.nih.gov/pubmed/31554699 https://www.proquest.com/docview/2303710143 https://search.proquest.com/docview/2298144580 https://pubmed.ncbi.nlm.nih.gov/PMC6789556 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-396721 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB21PXFBFCgEShUkkMohu7Ed28mxWlpVSEUcKOrNsr0ORGKdVXYX9ed37HxUKzhxtp2PN7bnjTx-A_ChpFqYQtIsrzXPCmJJpnNbZUtmjC6YIS5WUbj5Kq5viy93_O4A-HgXJibtW9PM_O_VzDe_Ym7lemXnY57Y_NvNAjfYinMxP4RDdL9jiD4p7Zb9vROK229Bi1HPR7L52uvNDD0gsgxBSKhexII7FVH49dEr9YmJ_6Kcf2dO7umLRp909QyeDmQyveg_-hgOnH8Ox8Ny3aTng6b0pxewuLy3gVxm8QJRGtQZWp9uI2t1Xdo5pKJ_cAji3OiujTquyM_TxqervoCu27yE26vL74vrbKifkFn8qW1GrWA1q2tHtLTWSucqjKMFdRgzOsKXiASvbG4N7jTGLitiS001Oiiic41j2Qkc-da715DWZmmtE0wTQeNJa-mQerCiJpIZJvIEzkf81LqXyVDxeFsyFVBXj6gncBLxnfpRUXJZSZrA6Qi4GhbSRmGExGSoJ8wSeD814xII5xrau3aHfWhVYlyIdk_gVW-f6eGjgROQe5abOgR57f0WnHVRZnuYZQl87G28N-Rz8-NCtd1PtdspVgmMo9_89xvewhOkYVWfWXgKR9tu594h1dmas-Bo-Fmc4A82Yv83 |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcoBL1QKFtAWCBFI5ZDe2Ezs-VkurBboVhxb1Ztlep0TqJqvsbsXPZ-J8VCs4cbadjze25408fgPwMaOam0TQKM51GiXEkkjHVkZzZoxOmCHOV1GYXfHpTfLtNr3dgbS_C-OT9q0pRuX9YlQWv3xu5XJhx32e2PjHbIIbrExTPn4CT1MmJOmD9EFrN2tvnlDcgBOa9Io-go2XpV6N0Aciz-CENPWLWONQuZd-ffRLbWriv0jn37mTWwqj3itd7MNeRyfDs_azD2DHlS_goFuwq_C0U5X-_BIm579tQy8jf4UobPQZqjJce97q6rB2SEYfcAgiXei68kquyNDDogwXbQldt3oFNxfn15Np1FVQiCz-1DqilrOc5bkjWlhrhXMSI2lOHUaNjqRzRCKVNrYG9xpj55LYTFONLoroWONYdgi7ZVW6NxDmZm6t40wTTv1Za-aQfLAkJ4IZxuMATnv81LIVylD-gFsw1aCuHlEP4NDjO_SjPEuFFDSAkx5w1S2llcIYiYmmojAL4MPQjIugOdnQpas22IfKDCNDtHsAr1v7DA_vDRyA2LLc0KER2N5uwXnnhba7eRbAp9bGW0O-FD_PVFXfqc1GMckxkj767ze8h2fT69mluvx69f0YniMpk22e4QnsruuNe4vEZ23e-Wn-B8OYAbU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAXRIFCoECQQCqHbGI7sZNjte2qPFr1QFFvlu04JRLrrLK7iJ_PxHmUFZw4285jZuz5RjP-BuBdThXXqaBRUqksSokhkUpMEZVMa5UyTazvonB-wc-u0k_X2fUfrb580b7R9cz9WM5c_d3XVq6WJh7rxOLL8zkesEWW8XhVVvFduJcxNLIxUJ_4dvP-9gnFQzil6cjqI1i8cmo9Qz-IWIMT0vUwYp1T5Z7-9dY39eWJ_wKef9dP7rCMes-0eAQPB0gZHvefvg93rHsM-8OmXYdHA7P0hycwP_1lOogZ-WtEYcfR0Lhw47GrbcPWIiD9iUtQ2rVqG8_miig9rF247Nvo2vVTuFqcfp2fRUMXhcjgT20iajirWFVZooQxRlhbYDTNqcXI0ZKsRElkhUmMxvNGm7IgJldUoZsiKlG4lh3AnmucfQ5hpUtjLGeKcOrzrblFAMLSigimGU8COBrlJ1c9WYb0SW7BZCd1eSv1AA68fKd5lOeZKAQN4HAUuBy201pinMRE11WYBfB2GsaN0GU3lLPNFufQIsfoEPUewLNeP9PDRwUHIHY0N03oSLZ3R9D2PNn2YGsBvO91vLPkpP52LJv2Rm63khUco-kX__2GN3D_8mQhv3y8-PwSHiAuK_pSw0PY27Rb-wqxz0a_9lb-G3h8Asg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excited-state+proton+transfer+relieves+antiaromaticity+in+molecules&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wu%2C+Chia-Hua&rft.au=Karas%2C+Lucas+Jos%C3%A9&rft.au=Ottosson%2C+Henrik&rft.au=Wu%2C+Judy+I-Chia&rft.date=2019-10-08&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=41&rft.spage=20303&rft.epage=20308&rft_id=info:doi/10.1073%2Fpnas.1908516116&rft_id=info%3Apmid%2F31554699&rft.externalDBID=PMC6789556 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |