High-level expression and characterization of bioactive human truncated variant of hepatocyte growth factor in Escherichia coli
Hepatocyte growth factor (HGF) is an effective anti-fibrotic factor because of its bioactivity in inhibiting fibrosis-related proteins in the development of hepatic fibrosis. However, high-level production of bioactive mature form HGF is difficult because of its complex structure. Here, we report a...
Saved in:
Published in | World journal of microbiology & biotechnology Vol. 30; no. 11; pp. 2851 - 2859 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.11.2014
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Hepatocyte growth factor (HGF) is an effective anti-fibrotic factor because of its bioactivity in inhibiting fibrosis-related proteins in the development of hepatic fibrosis. However, high-level production of bioactive mature form HGF is difficult because of its complex structure. Here, we report a non-fusion protein expression system to obtain truncated variant of N-terminal hairpin and first kringle domains of HGF (tvNK1) in
Escherichia coli
to determine its anti-fibrotic effects on hepatic stellate cells (HSCs). Under the selected conditions of cultivation and isopropyl-β-D-1-thiogalactopyranoside induction, the expression level of tvNK1 accounted for approximately 65 % of the total cellular protein and 50 % of fusion protein in the supernatant of whole cell lysates. The recombinant protein could be purified in one step with Ni
2+
-affinity chromatograph. Finally, about 65 mg recombinant tvNK1 was obtained from 1 l fermentation culture with no <95 % purity. In vitro, the final purified tvNK1 was shown to inhibit the proliferation of HSCs and decrease the mRNA and protein expression levels of fibrosis-related COL1A1 and α-smooth muscle actin genes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0959-3993 1573-0972 |
DOI: | 10.1007/s11274-014-1711-3 |