High-level expression and characterization of bioactive human truncated variant of hepatocyte growth factor in Escherichia coli

Hepatocyte growth factor (HGF) is an effective anti-fibrotic factor because of its bioactivity in inhibiting fibrosis-related proteins in the development of hepatic fibrosis. However, high-level production of bioactive mature form HGF is difficult because of its complex structure. Here, we report a...

Full description

Saved in:
Bibliographic Details
Published inWorld journal of microbiology & biotechnology Vol. 30; no. 11; pp. 2851 - 2859
Main Authors Wang, Xiaohua, Liu, Haifeng, Zhang, Zhongmin, Liu, Yang, Li, Yuting, Gui, Jinqiu, Chu, Yanhui
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.11.2014
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hepatocyte growth factor (HGF) is an effective anti-fibrotic factor because of its bioactivity in inhibiting fibrosis-related proteins in the development of hepatic fibrosis. However, high-level production of bioactive mature form HGF is difficult because of its complex structure. Here, we report a non-fusion protein expression system to obtain truncated variant of N-terminal hairpin and first kringle domains of HGF (tvNK1) in Escherichia coli to determine its anti-fibrotic effects on hepatic stellate cells (HSCs). Under the selected conditions of cultivation and isopropyl-β-D-1-thiogalactopyranoside induction, the expression level of tvNK1 accounted for approximately 65 % of the total cellular protein and 50 % of fusion protein in the supernatant of whole cell lysates. The recombinant protein could be purified in one step with Ni 2+ -affinity chromatograph. Finally, about 65 mg recombinant tvNK1 was obtained from 1 l fermentation culture with no <95 % purity. In vitro, the final purified tvNK1 was shown to inhibit the proliferation of HSCs and decrease the mRNA and protein expression levels of fibrosis-related COL1A1 and α-smooth muscle actin genes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0959-3993
1573-0972
DOI:10.1007/s11274-014-1711-3