Shear bands and the evolving microstructure in a drying colloidal film studied with scanning µ-SAXS

Shear localisation in thin bands is an important process involved in the plastic deformation of materials subject to stress. This process is often sensitive to the sample microstructure (amorphous/crystalline). Here we show using the scanning µ-SAXS technique, how these different microstructures inf...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 8; no. 1; pp. 12979 - 9
Main Authors Yang, Bin, Smith, Nathan D., Johannes, Andreas, Burghammer, Manfred, Smith, Mike I.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.08.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Shear localisation in thin bands is an important process involved in the plastic deformation of materials subject to stress. This process is often sensitive to the sample microstructure (amorphous/crystalline). Here we show using the scanning µ-SAXS technique, how these different microstructures influence the plastic deformations in a drying colloidal film. In crystalline samples, the presence of an ordering transition at the compaction front was directly identified through the development of a six-fold symmetry in the scattering pattern in 20 wt% samples. It is shown that plastic deformations in individual groups of particles during the compaction process can be tracked and measured in real time. Higher concentration suspensions were found to result in amorphous structures. The transition between crystalline and amorphous microstructures with initial particle concentration was also found to correlate with the appearance of shear bands. Through 2D spatial mapping of the local film structure, the presence of shear bands in the films was directly related to the microscale spatial variations in strain magnitude and compression direction. Our measurements also showed that shear bands lead to a reduction in the local particle volume fraction ~1–2%, indicating significant dilatancy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-31405-6