A Magnetoelectrochemical Bioassay for Highly Sensitive Sensing of Point Mutations in Interleukin-6 Gene Using TMB as a Hybridization Intercalation Indicator

Point mutations are common in the human DNA genome and are closely related to higher susceptibility to cancer diseases. Therefore, suitable methods for their sensing are of general interest. In this work, we report on a magnetic electrochemical bioassay using DNA probes tethered to streptavidin magn...

Full description

Saved in:
Bibliographic Details
Published inBiosensors (Basel) Vol. 13; no. 2; p. 240
Main Authors Baachaoui, Sabrine, Mastouri, Mohamed, Meftah, Maroua, Yaacoubi-Loueslati, Basma, Raouafi, Noureddine
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.02.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Point mutations are common in the human DNA genome and are closely related to higher susceptibility to cancer diseases. Therefore, suitable methods for their sensing are of general interest. In this work, we report on a magnetic electrochemical bioassay using DNA probes tethered to streptavidin magnetic beads (strep-MBs) to detect T > G single nucleotide polymorphism (SNP) within the inteleukin-6 (IL6) gene in human genomic DNA. In the presence of the target DNA fragment and tetramethylbenzidine (TMB), the electrochemical signal related to the oxidation of TMB is observed, which is much higher than the one obtained in the absence of the target. The key parameters affecting the analytical signal, such as the concentration of the biotinylated probe, its incubation time with strep-MBs, DNA hybridization time, and TMB loading, were optimized using the electrochemical signal intensity and signal-to-blank (S/B) ratio as selection criteria. Using spiked buffer solutions, the bioassay can detect the mutated allele in a wide range of concentrations (over six decades) with a low detection limit (7.3 fM). Furthermore, the bioassay displays a high specificity with high concentrations of the major allele (one mismatched), and two mismatched and non–complementary DNA. More importantly, the bioassay can detect the variation in scarcely diluted human DNA, collected from 23 donors, and can reliably distinguish between heterozygous (TG genotype) and homozygous (GG genotype) in respect to the control subjects (TT genotype), where the differences are statistically highly significant (p-value < 0.001). Thus, the bioassay is useful for cohort studies targeting one or more mutations in human DNA.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2079-6374
2079-6374
DOI:10.3390/bios13020240