Polymeric check valve with an elevated pedestal for precise cracking pressure in a glaucoma drainage device

This paper presents the design, fabrication, and characterization of a polymeric micro check valve for a glaucoma drainage device (GDD) featuring the precise regulation of intraocular pressure (IOP) and effective aqueous humor turnover (AHT). The pedestal, slightly elevated by selective coating of a...

Full description

Saved in:
Bibliographic Details
Published inBiomedical microdevices Vol. 18; no. 1; pp. 20 - 8
Main Authors Park, Chang-Ju, Yang, Dong-Seong, Cha, Jung-Joon, Lee, Jong-Hyun
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents the design, fabrication, and characterization of a polymeric micro check valve for a glaucoma drainage device (GDD) featuring the precise regulation of intraocular pressure (IOP) and effective aqueous humor turnover (AHT). The pedestal, slightly elevated by selective coating of a parylene C film, induces pre-stress in the thin valve membrane, which enhances the predictability of the cracking pressure of the GDD. The proposed GDD comprises a cannula and a normally closed polymeric micro check valve, which are made of PDMS, a biocompatible polymer, with three layers: top (cover), intermediate (thin valve membrane), and bottom (base plate). A feedback channel, located between the top and intermediate layers, prevents reverse flow by feeding the pressure of the outlet channel back to the thin valve membrane. To achieve a precise cracking pressure and sufficient drainage of humor for humans, the thicknesses of the valve membrane and parylene C film are designed to be 58 μm and 1 μm, respectively, which are confirmed using a COMSOL simulation. The experimental results show that the cracking pressure of the fabricated GDD lies within the range of normal IOP (1.33–2.67 kPa). The forward flow rate (drainage rate), 4.3 ± 0.9 μL/min at 2.5 kPa, is adequate to accommodate the rate of AHT in a normal human eye (2.4 ± 0.6 μL/min). The reverse flow was not observed when a hydrostatic pressure of up to 4 kPa was applied to the outlet and the feedback channel.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1387-2176
1572-8781
DOI:10.1007/s10544-016-0048-0