Recovery of phosphorus as struvite from sewage sludge ash

Phosphorus (P) is an element vital for all living organisms, yet the world's reserves of phosphate rock are becoming depleted. This study investigated an effective P recovery method from sludge ash via struvite precipitation. Results showed that more than 95% of the total P content was extracte...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental sciences (China) Vol. 24; no. 8; pp. 1533 - 1538
Main Authors Xu, Huacheng, He, Pinjing, Gu, Weimei, Wang, Guanzhao, Shao, Liming
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.08.2012
State Key Laboratory of Pollution Control and Resource Reuse,College of Environmental Science and Engineering,Tongji University,Shanghai 200092,China
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Phosphorus (P) is an element vital for all living organisms, yet the world's reserves of phosphate rock are becoming depleted. This study investigated an effective P recovery method from sludge ash via struvite precipitation. Results showed that more than 95% of the total P content was extracted from sludge ash by applying 0.5 mol/L HCl at a liquid/solid ratio of 50 mL/g. Although heavy metal leaching also occurred during P extraction, cation exchange resin efficiently removed the heavy metals from the P-rich solution. Orthogonal tests showed that the optimal parameters for P precipitation as struvite would be a Mg:N:P molar ratio of 1.6:1.6:1 at pH 10.0. X-ray diffraction analysis validated the formation of struvite. Further investigations revealed that the harvested precipitate had a high struvite content (97%), high P bioavailability (94%), and low heavy metal content, which could be considered a high quality fertilizer.
Bibliography:Phosphorus (P) is an element vital for all living organisms, yet the world's reserves of phosphate rock are becoming depleted. This study investigated an effective P recovery method from sludge ash via struvite precipitation. Results showed that more than 95% of the total P content was extracted from sludge ash by applying 0.5 mol/L HC1 at a liquid/solid ratio of 50 mL/g. Although heavy metal leaching also occurred during P extraction, cation exchange resin efticiently removed the heavy metals from the P-rich solution. Orthogonal tests showed that the optimal parameters for P precipitation as struvite would be a Mg:N:P molar ratio of 1.6:1.6:1 at pH 10.0. X-ray diffraction analysis validated the formation of struvite. Further investigations revealed that the harvested precipitate had a high struvite content (97%), high P bioavailability (94%), and low heavy metal content, which could be considered a high quality fertilizer.
phosphorus recovery; heavy metal; sewage sludge ash; struvite; X-ray diffraction
11-2629/X
http://dx.doi.org/10.1016/S1001-0742(11)60969-8
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1001-0742
1878-7320
DOI:10.1016/S1001-0742(11)60969-8