Synthesis of New Zirconium Magnetic Nanocomposite as a Bioactive Agent and Green Catalyst in the Four-Component Synthesis of a Novel Multi-Ring Compound Containing Pyrazole Derivatives

New nanocomposites containing zirconium were synthesized using microwave irradiation. Their structure was confirmed by vibrating sample magnetometer (VSM) curves, X-ray diffraction (XRD) patterns, scanning electron microscope (SEM) and transmission electron microscopy (TEM) images, Fourier transform...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 12; no. 24; p. 4468
Main Authors Asiri, Mohammed, Abdulsalam, Ahmed Ghalib, Kahtan, Mustafa, Alsaikhan, Fahad, Farhan, Issa, Mutlak, Dhameer A, Hadrawi, Salema K, Suliman, Muath, Di Lorenzo, Ritamaria, Laneri, Sonia
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:New nanocomposites containing zirconium were synthesized using microwave irradiation. Their structure was confirmed by vibrating sample magnetometer (VSM) curves, X-ray diffraction (XRD) patterns, scanning electron microscope (SEM) and transmission electron microscopy (TEM) images, Fourier transform infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) N adsorption/desorption isotherms. After the structure confirmation of the zirconium magnetic nanocomposite, the catalytic properties in the synthesis of pyrazole derivatives were investigated. Next, the biological activities of the zirconium magnetic nanocomposite, such as the antibacterial and antifungal activities, were investigated. The research results showed that the zirconium magnetic nanocomposite has high catalytic properties and can be used as a magnetic nanocatalyst for synthesizing heterocyclic compounds such as pyrazole derivatives in addition to having high biological properties. The unique properties of the nanoparticles can be attributed to their synthesis method and microwave radiation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2079-4991
2079-4991
DOI:10.3390/nano12244468