Dimensionality reduction for visualizing single-cell data using UMAP
A benchmarking analysis on single-cell RNA-seq and mass cytometry data reveals the best-performing technique for dimensionality reduction. Advances in single-cell technologies have enabled high-resolution dissection of tissue composition. Several tools for dimensionality reduction are available to a...
Saved in:
Published in | Nature biotechnology Vol. 37; no. 1; pp. 38 - 44 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.01.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1087-0156 1546-1696 1546-1696 |
DOI | 10.1038/nbt.4314 |
Cover
Loading…
Summary: | A benchmarking analysis on single-cell RNA-seq and mass cytometry data reveals the best-performing technique for dimensionality reduction.
Advances in single-cell technologies have enabled high-resolution dissection of tissue composition. Several tools for dimensionality reduction are available to analyze the large number of parameters generated in single-cell studies. Recently, a nonlinear dimensionality-reduction technique, uniform manifold approximation and projection (UMAP), was developed for the analysis of any type of high-dimensional data. Here we apply it to biological data, using three well-characterized mass cytometry and single-cell RNA sequencing datasets. Comparing the performance of UMAP with five other tools, we find that UMAP provides the fastest run times, highest reproducibility and the most meaningful organization of cell clusters. The work highlights the use of UMAP for improved visualization and interpretation of single-cell data. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1087-0156 1546-1696 1546-1696 |
DOI: | 10.1038/nbt.4314 |