MiR-29b Protects Dorsal Root Ganglia Neurons from Diabetic Rat

Accumulated evidences implicated that microRNAs may be involved in diabetic neuropathy. Here, we investigated miR-29’s roles in primary isolated dorsal root ganglion (DRG) neurons from STZ-induced diabetic rats. First, miR-29b was found down-regulated after STZ-injection. Inhibitions were increased...

Full description

Saved in:
Bibliographic Details
Published inCell biochemistry and biophysics Vol. 70; no. 2; pp. 1105 - 1111
Main Authors Zhang, Xiaona, Gong, Xu, Han, Shuhai, Zhang, Yang
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.11.2014
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Accumulated evidences implicated that microRNAs may be involved in diabetic neuropathy. Here, we investigated miR-29’s roles in primary isolated dorsal root ganglion (DRG) neurons from STZ-induced diabetic rats. First, miR-29b was found down-regulated after STZ-injection. Inhibitions were increased with time course. Down-regulation of miR-29b was associated with higher apoptosis rate and more serious axonal swelling. Meanwhile, axonogeneration genes were inhibited, whereas neurodegenerative genes were stimulated. Restoration of miR-29b by mimic experiment could reverse the above neuropathy. Furthermore, western blot analysis disclosed that miR-29b could abolish Smad3 activation. In conclusion, the present study identifies that miR-29b could protect DRG from diabetic rats. This protective effects suggested potential therapeutic application of miR-29b in diabetic neuropathy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1085-9195
1559-0283
DOI:10.1007/s12013-014-0029-y