Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs
The shear-responsive transcription factor Krüppel-like factor 2 (KLF2) is a critical regulator of endothelial gene expression patterns induced by atheroprotective flow. As microRNAs (miRNAs) post-transcriptionally control gene expression in many pathogenic and physiological processes, we investigate...
Saved in:
Published in | Nature cell biology Vol. 14; no. 3; pp. 249 - 256 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2012
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The shear-responsive transcription factor Krüppel-like factor 2 (KLF2) is a critical regulator of endothelial gene expression patterns induced by atheroprotective flow. As microRNAs (miRNAs) post-transcriptionally control gene expression in many pathogenic and physiological processes, we investigated the regulation of miRNAs by KLF2 in endothelial cells. KLF2 binds to the promoter and induces a significant upregulation of the miR-143/145 cluster. Interestingly, miR-143/145 has been shown to control smooth muscle cell (SMC) phenotypes; therefore, we investigated the possibility of transport of these miRNAs between endothelial cells and SMCs. Indeed, extracellular vesicles secreted by KLF2-transduced or shear-stress-stimulated HUVECs are enriched in miR-143/145 and control target gene expression in co-cultured SMCs. Extracellular vesicles derived from KLF2-expressing endothelial cells also reduced atherosclerotic lesion formation in the aorta of
ApoE
−/−
mice. Combined, our results show that atheroprotective stimuli induce communication between endothelial cells and SMCs through an miRNA- and extracellular-vesicle-mediated mechanism and that this may comprise a promising strategy to combat atherosclerosis.
Dimmeler and colleagues show that the atheroprotective transcription factor KLF2 activates expression of the microRNAs miR-143/145 in endothelial cells. miR-143/145 are subsequently enriched in secreted microvesicles and taken up by smooth muscle cells to elicit anti-atherogenic responses. |
---|---|
ISSN: | 1465-7392 1476-4679 |
DOI: | 10.1038/ncb2441 |