Proteomic analysis of Bacillus subtilis strains engineered for improved production of heterologous proteins

The use of bacterial systems for recombinant protein production has advantages of simplicity, time and cost over competing systems. However, widely used bacterial expression systems (e.g. Escherichia coli, Pseudomonas fluorescens) are not able to secrete soluble proteins directly into the culture me...

Full description

Saved in:
Bibliographic Details
Published inProteomics (Weinheim) Vol. 13; no. 22; pp. 3298 - 3308
Main Authors Pohl, Susanne, Bhavsar, Gaurav, Hulme, Joanne, Bloor, Alexandra E., Misirli, Goksel, Leckenby, Matthew W., Radford, David S., Smith, Wendy, Wipat, Anil, Williamson, E. Diane, Harwood, Colin R., Cranenburgh, Rocky M.
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 01.11.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The use of bacterial systems for recombinant protein production has advantages of simplicity, time and cost over competing systems. However, widely used bacterial expression systems (e.g. Escherichia coli, Pseudomonas fluorescens) are not able to secrete soluble proteins directly into the culture medium. This limits yields and increases downstream processing time and costs. In contrast, Bacillus spp. secrete native enzymes directly into the culture medium at grams‐per‐litre quantities, although the yields of some recombinant proteins are severely limited. We have engineered the Bacillus subtilis genome to generate novel strains with precise deletions in the genes encoding ten extracytoplasmic proteases that affect recombinant protein secretion, which lack chromosomal antibiotic resistance genes. The deletion sites and presence of single nucleotide polymorphisms were confirmed by sequencing. The strains are stable and were used in industrial‐scale fermenters for the production of the Bacillus anthracis vaccine protein, protective antigen, the productivity of which is extremely low in the unmodified strain. We also show that the deletion of so‐called quality control proteases appears to influence cell‐wall synthesis, resulting in the induction of the cell‐wall stress regulon that encodes another quality control protease.
Bibliography:Engineering and Physical Sciences Research Council Synthetic Biology Grant - No. EP/J02175X/1
ark:/67375/WNG-PXMPBLZV-M
U.K. Department of Trade and Industry LINK Applied Genomics Grant - No. APPGEN 79
European Union Sixth Framework Grant - No. LSHC-CT-2004-503468
istex:F2FC26D1A4F967AC9B1CFF4E52A8213C3D14FB6D
ArticleID:PMIC7569
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1615-9853
1615-9861
DOI:10.1002/pmic.201300183