Structural Characterization and Spatial Mapping of Tetrodotoxins in Australian Polyclads

Tetrodotoxin (TTX) is a potent marine neurotoxin that occurs in several Australian phyla, including pufferfish, toadfish, gobies, and the blue-ringed octopus. These animals are partially immune, and TTX is known to bioaccumulate and subject to trophic transfer. As such, it could be more ubiquitously...

Full description

Saved in:
Bibliographic Details
Published inMarine drugs Vol. 20; no. 12; p. 788
Main Authors McNab, Justin M., Briggs, Matthew T., Williamson, Jane E., Hoffmann, Peter, Rodriguez, Jorge, Karuso, Peter
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 19.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Tetrodotoxin (TTX) is a potent marine neurotoxin that occurs in several Australian phyla, including pufferfish, toadfish, gobies, and the blue-ringed octopus. These animals are partially immune, and TTX is known to bioaccumulate and subject to trophic transfer. As such, it could be more ubiquitously distributed in animals than is currently known. Flatworms of the order Polycladida are commonly occurring invertebrates in intertidal ecosystems and are especially diverse in Australian waters. While TTX has been identified in polyclads from Japan and New Zealand, Australian species have yet to be tested. In this study, several eastern Australian polyclad flatworm species from the suborders Cotylea and Acotylea were tested for TTX and analogs by HILIC-HRMS to understand the distribution of this toxin within these suborders. Herein, we report the detection of TTX and some known analogs in polyclad species, one of which is a pest to shellfish aquaculture. We also report, for the first time, the application of MALDI mass spectrometry imaging utilized to map TTX spatially within the intestinal system of polyclads. The identification of TTX and its analogs in Australian flatworms illustrates a broader range of toxic flatworms and highlights that analogs are important to consider when studying the distributions of toxins in animals.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1660-3397
1660-3397
DOI:10.3390/md20120788