MRI Tumor Regression Grade Combined with T2-Weighted Volumetry May Predict Histopathological Response in Locally Advanced Rectal Cancer following Neoadjuvant Chemoradiotherapy—A New Scoring System Proposal

Modern studies focus on the discovery of innovative methods to improve the value of post-treatment magnetic resonance imaging (MRI) in the prediction of pathological responses to preoperative neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC). The aim of this study was to...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 13; no. 20; p. 3226
Main Authors Jankovic, Aleksandra, Kovac, Jelena Djokic, Dakovic, Marko, Mitrovic, Milica, Saponjski, Dusan, Milicevic, Ognjen, Djuric-Stefanovic, Aleksandra, Barisic, Goran
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Modern studies focus on the discovery of innovative methods to improve the value of post-treatment magnetic resonance imaging (MRI) in the prediction of pathological responses to preoperative neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC). The aim of this study was to assess the potential benefits of combining magnetic resonance tumor regression grade (mrTRG) with T2-weighted volumetry in the prediction of pathological responses to nCRT in LARC. This was a cohort study conducted on patients with histopathologically confirmed LARC in a period from 2020 to 2022. After histopathological verification, all patients underwent initial MRI studies, while the follow-up MRI was performed after nCRT. Tumor characteristics, MRI estimated tumor regression grade (mrTRG) and tumor volumetry were evaluated both initially and at follow-up. All patients were classified into responders and non-responders according to pathological tumor regression grade (pTRG) and mrTRG. A total of 71 patients, mostly male (66.2%) were included in the study. The median tumor volume reduction rate was significantly higher in nCRT-responders compared to non-responders (79.9% vs. 63.3%) (p = 0.003). Based on ROC analysis, optimal cut-off value for tumor volume reduction rate was determined with an area under the curve (AUC) value of 0.724 (p = 0.003). Using the tumor volume reduction rate ≥75% with the addition of response to nCRT according to mrTRG, a new scoring system for prediction of pTRG to preoperative nCRT in LARC was developed. Diagnostic performance of prediction score was tested and the sensitivity, PPV, specificity, and NPV were 81.8%, 56.3%, 71.4%, and 89.7%, respectively. The combination of mrTRG and T2-weighted volumetry increases the MRI-based prediction of pTRG to preoperative nCRT in LARC. The proposed scoring system could aid in distinguishing responders to nCRT, as these patients could benefit from organ-preserving treatment and a “watch and wait” strategy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2075-4418
2075-4418
DOI:10.3390/diagnostics13203226