Population pharmacokinetic model development and its relationship with adverse events of oxcarbazepine in adult patients with epilepsy

This study aimed to develop a pharmacokinetic (PK) model of oxcarbazepine (OXC) and analyse the relationship between monohydroxylated derivative (MHD), an active metabolite of OXC, and the adverse events of OXC. We obtained 711 OXC samples from 618 patients with epilepsy who were enrolled in the Epi...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; p. 6370
Main Authors Jang, Yoonhyuk, Yoon, Seonghae, Kim, Tae-Joon, Lee, SeungHwan, Yu, Kyung-Sang, Jang, In-Jin, Chu, Kon, Lee, Sang Kun
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 18.03.2021
Nature Publishing Group UK
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study aimed to develop a pharmacokinetic (PK) model of oxcarbazepine (OXC) and analyse the relationship between monohydroxylated derivative (MHD), an active metabolite of OXC, and the adverse events of OXC. We obtained 711 OXC samples from 618 patients with epilepsy who were enrolled in the Epilepsy Registry Cohort of Seoul National University Hospital from February 2011 to January 2014. The plasma PK model was developed using a nonlinear mixed-effect modelling method with NONMEM (ver 7.3). A one-compartment model with a first-order absorption model and proportional residual error adequately described the MHD concentration-time profiles. The only covariate incorporated for CL/F and V/F was body weight. Of the 447 patients analysed, 28 (6.26%) had dose-related adverse events (DRAEs), which were dizziness, somnolence, headache, and diplopia. For DRAE occurrence, the cut-off values of the MHD trough and AUC were 12.27 mg/L (specificity 0.570, sensitivity 0.643) and 698.5 mg h/L (specificity, sensitivity 0.571), respectively. Multivariate analysis showed the sole dizziness symptom was significantly associated with both the MHD trough and the AUC (p = 0.013, p = 0.038, respectively). We newly developed a population PK model using sparse sampling data from patients with epilepsy, and the model better reflects the actual clinical situation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-85920-0