Brown Adipose Tissue and Its Role in Insulin and Glucose Homeostasis

The increased worldwide prevalence of obesity, insulin resistance, and their related metabolic complications have prompted the scientific world to search for new possibilities to combat obesity. Brown adipose tissue (BAT), due to its unique protein uncoupling protein 1 (UPC1) in the inner membrane o...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 22; no. 4; p. 1530
Main Authors Maliszewska, Katarzyna, Kretowski, Adam
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 03.02.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The increased worldwide prevalence of obesity, insulin resistance, and their related metabolic complications have prompted the scientific world to search for new possibilities to combat obesity. Brown adipose tissue (BAT), due to its unique protein uncoupling protein 1 (UPC1) in the inner membrane of the mitochondria, has been acknowledged as a promising approach to increase energy expenditure. Activated brown adipocytes dissipate energy, resulting in heat production. In other words, BAT burns fat and increases the metabolic rate, promoting a negative energy balance. Moreover, BAT alleviates metabolic complications like dyslipidemia, impaired insulin secretion, and insulin resistance in type 2 diabetes. The aim of this review is to explore the role of BAT in total energy expenditure, as well as lipid and glucose homeostasis, and to discuss new possible activators of brown adipose tissue in humans to treat obesity and metabolic disorders.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms22041530