Effect of Central Longitudinal Dipole Interactions on Chiral Liquid-Crystal Phases

Monte Carlo simulations of chiral liquid-crystals, represented by a simple coarse-grained chiral Gay⁻Berne model, were performed to investigate the effect of central longitudinal dipole interactions on phase behavior. A systematic analysis of the structural properties and phase behavior of both achi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 19; no. 9; p. 2715
Main Authors Nozawa, Takuma, Brumby, Paul E, Yasuoka, Kenji
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 11.09.2018
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Monte Carlo simulations of chiral liquid-crystals, represented by a simple coarse-grained chiral Gay⁻Berne model, were performed to investigate the effect of central longitudinal dipole interactions on phase behavior. A systematic analysis of the structural properties and phase behavior of both achiral and chiral systems, with dipole interactions, reveals differing effects; strong dipole interactions enhance the formation of layered structures; however, chiral interactions may prevent the formation of such phases under certain conditions. We also observed a short-ranged smectic structure within the cholesteric phases with strong dipole interactions. This constitutes possible evidence of presmectic ordering and/or the existence of chiral line liquid phases, which have previously been observed in X-ray experiments to occur between the smectic twisted grain boundary and cholesteric phases. These results provide a systematic understanding of how the phase behavior of chiral liquid-crystals changes when alterations are made to the strength of dipole interactions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms19092715