ROS and Ions in Cell Signaling during Sexual Plant Reproduction

Pollen grain is a unique haploid organism characterized by two key physiological processes: activation of metabolism upon exiting dormancy and polar tube growth. In gymnosperms and flowering plants, these processes occur in different time frames and exhibit important features; identification of simi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 21; no. 24; p. 9476
Main Authors Breygina, Maria, Klimenko, Ekaterina
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 13.12.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pollen grain is a unique haploid organism characterized by two key physiological processes: activation of metabolism upon exiting dormancy and polar tube growth. In gymnosperms and flowering plants, these processes occur in different time frames and exhibit important features; identification of similarities and differences is still in the active phase. In angiosperms, the growth of male gametophyte is directed and controlled by its microenvironment, while in gymnosperms it is relatively autonomous. Recent reviews have detailed aspects of interaction between angiosperm female tissues and pollen such as interactions between peptides and their receptors; however, accumulated evidence suggests low-molecular communication, in particular, through ion exchange and ROS production, equally important for polar growth as well as for pollen germination. Recently, it became clear that ROS and ionic currents form a single regulatory module, since ROS production and the activity of ion transport systems are closely interrelated and form a feedback loop.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms21249476