Mechanism of Action for HDAC Inhibitors-Insights from Omics Approaches

Histone deacetylase inhibitors (HDIs) are a class of prominent epigenetic drugs that are currently being tested in hundreds of clinical trials against a variety of diseases. A few compounds have already been approved for treating lymphoma or myeloma. HDIs bind to the zinc-containing catalytic domain...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 20; no. 7; p. 1616
Main Authors Li, Wenbo, Sun, Zheng
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.04.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Histone deacetylase inhibitors (HDIs) are a class of prominent epigenetic drugs that are currently being tested in hundreds of clinical trials against a variety of diseases. A few compounds have already been approved for treating lymphoma or myeloma. HDIs bind to the zinc-containing catalytic domain of the histone deacetylase (HDACs) and they repress the deacetylase enzymatic activity. The broad therapeutic effect of HDIs with seemingly low toxicity is somewhat puzzling when considering that most HDIs lack strict specificity toward any individual HDAC and, even if they do, each individual HDAC has diverse functions under different physiology scenarios. Here, we review recent mechanistic studies using omics approaches, including epigenomics, transcriptomics, proteomics, metabolomics, and chemoproteomics, methods. These omics studies provide non-biased insights into the mechanism of action for HDIs.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms20071616