Applying decision tree for identification of a low risk population for type 2 diabetes. Tehran Lipid and Glucose Study
The aim of this study was to create a prediction model using data mining approach to identify low risk individuals for incidence of type 2 diabetes, using the Tehran Lipid and Glucose Study (TLGS) database. For a 6647 population without diabetes, aged ≥20 years, followed for 12 years, a prediction m...
Saved in:
Published in | Diabetes research and clinical practice Vol. 105; no. 3; pp. 391 - 398 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier Ireland Ltd
01.09.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0168-8227 1872-8227 1872-8227 |
DOI | 10.1016/j.diabres.2014.07.003 |
Cover
Abstract | The aim of this study was to create a prediction model using data mining approach to identify low risk individuals for incidence of type 2 diabetes, using the Tehran Lipid and Glucose Study (TLGS) database.
For a 6647 population without diabetes, aged ≥20 years, followed for 12 years, a prediction model was developed using classification by the decision tree technique. Seven hundred and twenty-nine (11%) diabetes cases occurred during the follow-up. Predictor variables were selected from demographic characteristics, smoking status, medical and drug history and laboratory measures.
We developed the predictive models by decision tree using 60 input variables and one output variable. The overall classification accuracy was 90.5%, with 31.1% sensitivity, 97.9% specificity; and for the subjects without diabetes, precision and f-measure were 92% and 0.95, respectively. The identified variables included fasting plasma glucose, body mass index, triglycerides, mean arterial blood pressure, family history of diabetes, educational level and job status.
In conclusion, decision tree analysis, using routine demographic, clinical, anthropometric and laboratory measurements, created a simple tool to predict individuals at low risk for type 2 diabetes. |
---|---|
AbstractList | Abstract Aims The aim of this study was to create a prediction model using data mining approach to identify low risk individuals for incidence of type 2 diabetes, using the Tehran Lipid and Glucose Study (TLGS) database. Methods For a 6647 population without diabetes, aged ≥20 years, followed for 12 years, a prediction model was developed using classification by the decision tree technique. Seven hundred and twenty-nine (11%) diabetes cases occurred during the follow-up. Predictor variables were selected from demographic characteristics, smoking status, medical and drug history and laboratory measures. Results We developed the predictive models by decision tree using 60 input variables and one output variable. The overall classification accuracy was 90.5%, with 31.1% sensitivity, 97.9% specificity; and for the subjects without diabetes, precision and f -measure were 92% and 0.95, respectively. The identified variables included fasting plasma glucose, body mass index, triglycerides, mean arterial blood pressure, family history of diabetes, educational level and job status. Conclusions In conclusion, decision tree analysis, using routine demographic, clinical, anthropometric and laboratory measurements, created a simple tool to predict individuals at low risk for type 2 diabetes. The aim of this study was to create a prediction model using data mining approach to identify low risk individuals for incidence of type 2 diabetes, using the Tehran Lipid and Glucose Study (TLGS) database. For a 6647 population without diabetes, aged ≥20 years, followed for 12 years, a prediction model was developed using classification by the decision tree technique. Seven hundred and twenty-nine (11%) diabetes cases occurred during the follow-up. Predictor variables were selected from demographic characteristics, smoking status, medical and drug history and laboratory measures. We developed the predictive models by decision tree using 60 input variables and one output variable. The overall classification accuracy was 90.5%, with 31.1% sensitivity, 97.9% specificity; and for the subjects without diabetes, precision and f-measure were 92% and 0.95, respectively. The identified variables included fasting plasma glucose, body mass index, triglycerides, mean arterial blood pressure, family history of diabetes, educational level and job status. In conclusion, decision tree analysis, using routine demographic, clinical, anthropometric and laboratory measurements, created a simple tool to predict individuals at low risk for type 2 diabetes. The aim of this study was to create a prediction model using data mining approach to identify low risk individuals for incidence of type 2 diabetes, using the Tehran Lipid and Glucose Study (TLGS) database.AIMSThe aim of this study was to create a prediction model using data mining approach to identify low risk individuals for incidence of type 2 diabetes, using the Tehran Lipid and Glucose Study (TLGS) database.For a 6647 population without diabetes, aged ≥20 years, followed for 12 years, a prediction model was developed using classification by the decision tree technique. Seven hundred and twenty-nine (11%) diabetes cases occurred during the follow-up. Predictor variables were selected from demographic characteristics, smoking status, medical and drug history and laboratory measures.METHODSFor a 6647 population without diabetes, aged ≥20 years, followed for 12 years, a prediction model was developed using classification by the decision tree technique. Seven hundred and twenty-nine (11%) diabetes cases occurred during the follow-up. Predictor variables were selected from demographic characteristics, smoking status, medical and drug history and laboratory measures.We developed the predictive models by decision tree using 60 input variables and one output variable. The overall classification accuracy was 90.5%, with 31.1% sensitivity, 97.9% specificity; and for the subjects without diabetes, precision and f-measure were 92% and 0.95, respectively. The identified variables included fasting plasma glucose, body mass index, triglycerides, mean arterial blood pressure, family history of diabetes, educational level and job status.RESULTSWe developed the predictive models by decision tree using 60 input variables and one output variable. The overall classification accuracy was 90.5%, with 31.1% sensitivity, 97.9% specificity; and for the subjects without diabetes, precision and f-measure were 92% and 0.95, respectively. The identified variables included fasting plasma glucose, body mass index, triglycerides, mean arterial blood pressure, family history of diabetes, educational level and job status.In conclusion, decision tree analysis, using routine demographic, clinical, anthropometric and laboratory measurements, created a simple tool to predict individuals at low risk for type 2 diabetes.CONCLUSIONSIn conclusion, decision tree analysis, using routine demographic, clinical, anthropometric and laboratory measurements, created a simple tool to predict individuals at low risk for type 2 diabetes. |
Author | Azizi, Fereidoun Ramezankhani, Azra Khalili, Davood Hadaegh, Farzad Shahrabi, Jamal Pournik, Omid |
Author_xml | – sequence: 1 givenname: Azra surname: Ramezankhani fullname: Ramezankhani, Azra organization: Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran – sequence: 2 givenname: Omid surname: Pournik fullname: Pournik, Omid organization: Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran – sequence: 3 givenname: Jamal surname: Shahrabi fullname: Shahrabi, Jamal organization: Industrial Engineering Department, Amirkabir University of Technology, Tehran, Iran – sequence: 4 givenname: Davood surname: Khalili fullname: Khalili, Davood organization: Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran – sequence: 5 givenname: Fereidoun surname: Azizi fullname: Azizi, Fereidoun organization: Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran – sequence: 6 givenname: Farzad surname: Hadaegh fullname: Hadaegh, Farzad email: fzhadaegh@endocrine.ac.ir, farzadhadaegh@gmail.com organization: Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25085758$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl9rFDEUxYNU7Lb6EZQ8-rLjTeZPZhCVUrQKCz60PodsckeznU3GJFOZb2-mu_pQkPqUS_I7h8s5OSMnzjsk5CWDggFr3uwKY9U2YCw4sKoAUQCUT8iKtYKvW87FCVllrr2fT8lZjDsAaMqqfkZOeQ1tLep2Re4uxnGYrftODWobrXc0BUTa-0CtQZdsb7VKy73vqaKD_0WDjbd09OM0HB4WNs0jUk6XnTDlpegN_gjK0Y0draHKGXo1TNpHpNdpMvNz8rRXQ8QXx_OcfPv08eby83rz9erL5cVmreuqSmteaQ6CCY7bSsG2z0Ndo-qUAaVK1kHNhVJNaRgI1fDG9A30XHVlxVSpKlGek9cH3zH4nxPGJPc2ahwG5dBPUbK6KbuOia7J6KsjOm33aOQY7F6FWf7JKgP1AdDBxxiw_4swkEsnciePncilEwlC5k6y7u0DnbbpPrkUlB0eVX84qDHHdGcxyKgtOo3GBtRJGm8fdXj_wEEP1uVWh1ucMe78FFzuQDIZuQR5vfya5dOwCoB3Yknm3b8N_mOB3-Lj1Ks |
CitedBy_id | crossref_primary_10_1155_2021_6053824 crossref_primary_10_1136_bmjopen_2016_013336 crossref_primary_10_3390_ijerph192114280 crossref_primary_10_1016_j_obmed_2019_100152 crossref_primary_10_1016_j_hlpt_2021_01_001 crossref_primary_10_2139_ssrn_4119296 crossref_primary_10_1016_j_cmpb_2016_10_020 crossref_primary_10_1016_j_aogh_2015_10_003 crossref_primary_10_1155_2019_4248218 crossref_primary_10_1007_s00038_017_1040_z crossref_primary_10_1016_j_cmpb_2022_107180 crossref_primary_10_3389_fpubh_2022_846118 crossref_primary_10_1016_j_endinu_2019_12_011 crossref_primary_10_7189_jogh_12_04068 crossref_primary_10_1016_j_artmed_2022_102461 crossref_primary_10_1016_j_actatropica_2018_03_017 crossref_primary_10_1038_s41598_017_03577_0 crossref_primary_10_1093_ajh_hpz004 crossref_primary_10_1155_2021_1999284 crossref_primary_10_1016_j_endien_2021_06_001 crossref_primary_10_2147_DMSO_S320808 crossref_primary_10_12674_ptk_2020_27_2_140 crossref_primary_10_1007_s11367_019_01591_0 crossref_primary_10_1080_01480545_2020_1783286 crossref_primary_10_1007_s11906_019_1006_z crossref_primary_10_1038_s41598_020_61123_x crossref_primary_10_1002_biof_1540 crossref_primary_10_1186_s13098_024_01516_4 crossref_primary_10_1186_s13098_025_01583_1 crossref_primary_10_1186_s12967_017_1346_x crossref_primary_10_2147_DMSO_S279329 crossref_primary_10_1080_00015385_2023_2246199 crossref_primary_10_1186_s12911_019_0790_3 crossref_primary_10_1016_j_cmpb_2017_02_001 crossref_primary_10_1111_1759_7714_13991 crossref_primary_10_1155_2020_6873891 crossref_primary_10_3390_a17110519 crossref_primary_10_1038_s41746_023_00933_5 crossref_primary_10_1016_j_compbiomed_2021_104527 crossref_primary_10_1080_10408363_2020_1857681 crossref_primary_10_3390_sym12010067 crossref_primary_10_5812_ijem_25389 crossref_primary_10_1016_j_jcrc_2017_02_019 crossref_primary_10_3349_ymj_2023_0246 crossref_primary_10_5812_ijem_84784 crossref_primary_10_4258_hir_2017_23_1_43 crossref_primary_10_1007_s11042_024_19766_9 crossref_primary_10_1007_s00580_017_2580_6 crossref_primary_10_1590_1516_3180_2016_0309010217 crossref_primary_10_1111_jch_13662 |
Cites_doi | 10.1007/s000380200008 10.1186/1471-2458-9-186 10.1016/j.artmed.2004.07.002 10.1016/j.diabres.2013.11.002 10.1016/S0140-6736(06)68967-8 10.2337/diacare.20.7.1183 10.1080/08839510500313653 10.1016/S0140-6736(10)60484-9 10.1016/j.artmed.2008.12.005 10.2337/diacare.26.11.3160 10.1007/s10916-009-9267-8 10.1016/S0933-3657(02)00051-9 10.1016/j.kjms.2012.08.016 10.1021/ci950063e 10.1016/S0933-3657(01)00086-0 10.1016/j.camwa.2005.08.034 10.1016/S0140-6736(98)12030-5 10.1016/S0933-3657(98)00062-1 10.1186/1745-6215-10-5 10.1007/s10916-011-9710-5 10.1016/j.eswa.2010.10.086 10.1016/j.eswa.2003.10.005 10.1016/j.amepre.2004.10.011 10.1038/jhh.2011.4 10.1111/j.1464-5491.2007.02157.x 10.1136/bmj.d7163 10.1023/A:1016409317640 10.1073/pnas.1733839100 10.1136/bmj.314.7080.533 10.1016/j.eswa.2010.10.017 10.1177/193229681100500631 10.1186/1471-2458-8-176 10.1136/bmj.e5900 10.1016/j.ijmedinf.2006.11.006 10.1186/1472-6947-10-16 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ireland Ltd Elsevier Ireland Ltd Copyright © 2014 Elsevier Ireland Ltd. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier Ireland Ltd – notice: Elsevier Ireland Ltd – notice: Copyright © 2014 Elsevier Ireland Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.diabres.2014.07.003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-8227 |
EndPage | 398 |
ExternalDocumentID | 25085758 10_1016_j_diabres_2014_07_003 S0168822714002976 1_s2_0_S0168822714002976 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Iran |
GeographicLocations_xml | – name: Iran |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 6PF 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABGSF ABJNI ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX ADVLN AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDZ HMK HMO HVGLF HZ~ IHE J1W KOM LZ1 M29 M41 MO0 N9A O-L O9- OAUVE OB0 ON- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SEL SES SEW SPCBC SSH SSU SSZ T5K WUQ X7M Z5R ZGI ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU DOVZS EFLBG LCYCR ZA5 AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c544t-24c207172eb4a0bf72e55ea9ad0aa3190527aa63d107a626df60f2a9341a3a473 |
IEDL.DBID | AIKHN |
ISSN | 0168-8227 1872-8227 |
IngestDate | Thu Sep 04 20:50:17 EDT 2025 Mon Jul 21 06:07:15 EDT 2025 Thu Apr 24 22:53:54 EDT 2025 Tue Jul 01 01:02:32 EDT 2025 Fri Feb 23 02:17:20 EST 2024 Sun Feb 23 10:20:03 EST 2025 Tue Aug 26 16:33:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Type 2 diabetes Decision tree Prediction model |
Language | English |
License | Copyright © 2014 Elsevier Ireland Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c544t-24c207172eb4a0bf72e55ea9ad0aa3190527aa63d107a626df60f2a9341a3a473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25085758 |
PQID | 1563991796 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1563991796 pubmed_primary_25085758 crossref_primary_10_1016_j_diabres_2014_07_003 crossref_citationtrail_10_1016_j_diabres_2014_07_003 elsevier_sciencedirect_doi_10_1016_j_diabres_2014_07_003 elsevier_clinicalkeyesjournals_1_s2_0_S0168822714002976 elsevier_clinicalkey_doi_10_1016_j_diabres_2014_07_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-01 |
PublicationDateYYYYMMDD | 2014-09-01 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Diabetes research and clinical practice |
PublicationTitleAlternate | Diabetes Res Clin Pract |
PublicationYear | 2014 |
Publisher | Elsevier Ireland Ltd |
Publisher_xml | – name: Elsevier Ireland Ltd |
References | Delen, Walker, Kadam (bib0060) 2005; 34 Meng, Huang, Rao, Zhang, Liu (bib0080) 2013; 29 Han, Kamber (bib0115) 2001 Park, Edington (bib0090) 2001; 23 Yoo, Alafaireet, Marinov, Pena-Hernandez, Gopidi, Chang (bib0125) 2012; 36 Hadaegh, Bozorgmanesh, Ghasemi, Harati, Saadat, Azizi (bib0150) 2008; 8 Podgorelec, Kokol, Stiglic, Rozman (bib0215) 2002; 26 Chen, Chuang, Yang, Wu (bib0065) 2011; 38 Noble, Mathur, Dent, Meads, Greenhalgh (bib0030) 2011; 343 Yu, Liu, Valdez, Gwinn, Khoury (bib0105) 2010; 10 Dallo, Weller (bib0010) 2003; 100 Daskalaki, Kopanas, Avouris (bib0195) 2006; 20 Report of the Expert Committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 1997;20:1183–1197. Barzilay, Spiekerman, Wahl, Kuller, Cushman, Furberg (bib0205) 1999; 354 Samanta, Bird, Kuijpers, Zimmerman, Jarvik, Wernovsky (bib0180) 2009; 46 Tukey (bib0155) 1977 Breiman, Friedman, Olsen, Stone (bib0185) 1984 Berner (bib0220) 2007 Azizi, Rahmani, Emami, Mirmiran, Hajipour, Madjid (bib0140) 2002; 47 Polak, Mendyk (bib0095) 2004; 26 [accessed 24.03.13]. Kammerer, McNabb, Becerra, Rosenblum, Shang, Iademarco (bib0120) 2005; 28 Booth, Kapral, Fung, Tu (bib0020) 2006; 368 Screening for type 2 diabetes. Report of a World Health Organization and International Diabetes Federation meeting; 2003. Lavrac (bib0190) 1999; 16 Chang, Wang, Jiang (bib0070) 2011; 38 Shanker (bib0100) 1996; 36 (bib0040) 2008 Michael, Berthold, Cebron, Dill, Gabriel, Kötter (bib0165) 2007 Li, Zhi, Ma, Cui, Zhu, Zhang (bib0170) 2012; 125 Aslan, Bozdemir, Sahin, Ogulata (bib0075) 2010; 34 Bellazzi, Zupan (bib0055) 2008; 77 Marinov, Mosa, Yoo, Boren (bib0175) 2011; 5 Su, Yang, Hsu, Chiu (bib0110) 2006; 51 Genuth, Alberti, Bennett, Buse, Defronzo (bib0200) 2003; 26 Breault, Goodall, Fos, Breault, Goodall, Fos (bib0085) 2002; 26 Stewart-Brown, Farmer (bib0050) 1997; 314 Alberti, Zimmet, Shaw (bib0025) 2007; 24 Emerging Risk Factors Collaboration, Sarwar, Gao, Seshasai, Gobin, Kaptoge, Di Angelantonio (bib0015) 2010; 375 Abbasi, Peelen, Corpeleijn, van der Schouw, Stolk, Spijkerman (bib0035) 2012; 345 Azizi, Ghanbarian, Momenan, Hadaegh, Mirmiran, Hedayati (bib0130) 2009; 10 Guariguata, Whiting, Hambleton, Beagley, Linnenkamp, Shaw (bib0005) 2014; 103 Hatami, Hadaegh, Khalili, Sheikholeslami, Azizi (bib0210) 2012; 26 Harati, Hadaegh, Saadat, Azizi (bib0145) 2009; 9 Chang (10.1016/j.diabres.2014.07.003_bib0070) 2011; 38 Stewart-Brown (10.1016/j.diabres.2014.07.003_bib0050) 1997; 314 Azizi (10.1016/j.diabres.2014.07.003_bib0130) 2009; 10 Noble (10.1016/j.diabres.2014.07.003_bib0030) 2011; 343 Chen (10.1016/j.diabres.2014.07.003_bib0065) 2011; 38 Park (10.1016/j.diabres.2014.07.003_bib0090) 2001; 23 Meng (10.1016/j.diabres.2014.07.003_bib0080) 2013; 29 Emerging Risk Factors Collaboration (10.1016/j.diabres.2014.07.003_bib0015) 2010; 375 Kammerer (10.1016/j.diabres.2014.07.003_bib0120) 2005; 28 Alberti (10.1016/j.diabres.2014.07.003_bib0025) 2007; 24 Samanta (10.1016/j.diabres.2014.07.003_bib0180) 2009; 46 Polak (10.1016/j.diabres.2014.07.003_bib0095) 2004; 26 Harati (10.1016/j.diabres.2014.07.003_bib0145) 2009; 9 Booth (10.1016/j.diabres.2014.07.003_bib0020) 2006; 368 Su (10.1016/j.diabres.2014.07.003_bib0110) 2006; 51 Guariguata (10.1016/j.diabres.2014.07.003_bib0005) 2014; 103 10.1016/j.diabres.2014.07.003_bib0045 Li (10.1016/j.diabres.2014.07.003_bib0170) 2012; 125 10.1016/j.diabres.2014.07.003_bib0160 Michael (10.1016/j.diabres.2014.07.003_bib0165) 2007 Bellazzi (10.1016/j.diabres.2014.07.003_bib0055) 2008; 77 Tukey (10.1016/j.diabres.2014.07.003_bib0155) 1977 Dallo (10.1016/j.diabres.2014.07.003_bib0010) 2003; 100 Breault (10.1016/j.diabres.2014.07.003_bib0085) 2002; 26 Breiman (10.1016/j.diabres.2014.07.003_bib0185) 1984 Hadaegh (10.1016/j.diabres.2014.07.003_bib0150) 2008; 8 Daskalaki (10.1016/j.diabres.2014.07.003_bib0195) 2006; 20 Barzilay (10.1016/j.diabres.2014.07.003_bib0205) 1999; 354 Genuth (10.1016/j.diabres.2014.07.003_bib0200) 2003; 26 Lavrac (10.1016/j.diabres.2014.07.003_bib0190) 1999; 16 Podgorelec (10.1016/j.diabres.2014.07.003_bib0215) 2002; 26 Shanker (10.1016/j.diabres.2014.07.003_bib0100) 1996; 36 Yoo (10.1016/j.diabres.2014.07.003_bib0125) 2012; 36 Yu (10.1016/j.diabres.2014.07.003_bib0105) 2010; 10 Han (10.1016/j.diabres.2014.07.003_bib0115) 2001 Abbasi (10.1016/j.diabres.2014.07.003_bib0035) 2012; 345 Hatami (10.1016/j.diabres.2014.07.003_bib0210) 2012; 26 Berner (10.1016/j.diabres.2014.07.003_bib0220) 2007 Delen (10.1016/j.diabres.2014.07.003_bib0060) 2005; 34 Marinov (10.1016/j.diabres.2014.07.003_bib0175) 2011; 5 Aslan (10.1016/j.diabres.2014.07.003_bib0075) 2010; 34 10.1016/j.diabres.2014.07.003_bib0135 Azizi (10.1016/j.diabres.2014.07.003_bib0140) 2002; 47 (10.1016/j.diabres.2014.07.003_bib0040) 2008 |
References_xml | – volume: 100 start-page: 10574 year: 2003 end-page: 11059 ident: bib0010 article-title: Effectiveness of diabetes mellitus screening recommendations publication-title: Proc Natl Acad Sci USA – reference: Screening for type 2 diabetes. Report of a World Health Organization and International Diabetes Federation meeting; 2003. – year: 2001 ident: bib0115 article-title: Data mining: concepts and techniques (Morgan–Kaufman Series of Data Management Systems) – year: 2007 ident: bib0220 article-title: Clinical decision support systems – volume: 20 start-page: 381 year: 2006 end-page: 417 ident: bib0195 article-title: Evaluation of classifiers for an uneven class distribution problem publication-title: Appl Artif Intell – volume: 34 start-page: 541 year: 2010 end-page: 550 ident: bib0075 article-title: Can neural network able to estimate the prognosis of epilepsy patients according to risk factors? publication-title: J Med Syst – volume: 26 start-page: 3160 year: 2003 end-page: 3167 ident: bib0200 article-title: Expert committee on the diagnosis and classification of diabetes mellitus. Follow-up report on the diagnosis of diabetes mellitus publication-title: Diabetes Care – volume: 16 start-page: 3 year: 1999 end-page: 23 ident: bib0190 article-title: Selected techniques for data mining in medicine publication-title: Artif Intell Med – year: 1977 ident: bib0155 article-title: Exploratory data analysis – volume: 36 start-page: 2431 year: 2012 end-page: 2448 ident: bib0125 article-title: Data mining in healthcare and biomedicine: a survey of the literature publication-title: J Med Syst – year: 1984 ident: bib0185 article-title: Classification and regression trees – volume: 343 start-page: d7163 year: 2011 ident: bib0030 article-title: Risk models and scores for type 2 diabetes: systematic review publication-title: BMJ – volume: 38 start-page: 5384 year: 2011 end-page: 5387 ident: bib0065 article-title: Exploring the risk factors of preterm birth using data mining publication-title: Expert Syst Appl – volume: 47 start-page: 408 year: 2002 end-page: 426 ident: bib0140 article-title: Cardiovascular risk factors in an Iranian urban population: Tehran lipid and glucose study (phase 1) publication-title: Soz Praventivmed – volume: 29 start-page: 93 year: 2013 end-page: 99 ident: bib0080 article-title: Comparison of three data mining models for predicting diabetes or prediabetes by risk factors publication-title: Kaohsiung J Med Sci – reference: Report of the Expert Committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 1997;20:1183–1197. – volume: 77 start-page: 81 year: 2008 end-page: 97 ident: bib0055 article-title: Predictive data mining in clinical medicine: current issues and guidelines publication-title: Int J Med Inform – volume: 26 start-page: 455 year: 2004 end-page: 460 ident: bib0095 article-title: Artificial intelligence technology as a tool for initial GDM screening publication-title: Expert Syst Appl – volume: 103 start-page: 137 year: 2014 end-page: 149 ident: bib0005 article-title: Global estimates of diabetes prevalence in adults for 2013 and projections for 2035 for the IDF Diabetes Atlas publication-title: Diabetes Res Clin Pract – volume: 34 start-page: 113 year: 2005 end-page: 127 ident: bib0060 article-title: Predicting breast cancer survivability: a comparison of three data mining methods publication-title: Artif Intell Med – volume: 38 start-page: 5507 year: 2011 end-page: 5513 ident: bib0070 article-title: Using data mining techniques for multi-diseases prediction modeling of hypertension and hyperlipidemia by common risk factors publication-title: Expert Syst Appl – volume: 28 start-page: 201 year: 2005 end-page: 207 ident: bib0120 article-title: Tuberculosis transmission in nontraditional settings: a decision-tree approach publication-title: Am J Prev Med – volume: 368 start-page: 29 year: 2006 end-page: 36 ident: bib0020 article-title: Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study publication-title: Lancet – reference: [accessed 24.03.13]. – volume: 8 start-page: 176 year: 2008 ident: bib0150 article-title: High prevalence of undiagnosed diabetes and abnormal glucose tolerance in the Iranian urban population: Tehran Lipid and Glucose Study publication-title: BMC Public Health – volume: 354 start-page: 622 year: 1999 end-page: 625 ident: bib0205 article-title: Cardiovascular disease in older adults with glucose disorders: comparison of American Diabetes Association criteria for diabetes mellitus with WHO criteria publication-title: Lancet – volume: 10 start-page: 5 year: 2009 ident: bib0130 article-title: Prevention of non communicable disease in a population in nutrition transition: Tehran lipid and glucose study phase II publication-title: Trials – volume: 26 start-page: 445 year: 2002 end-page: 446 ident: bib0215 article-title: Decision trees: an overview and their use in medicine publication-title: J Med Syst – volume: 10 start-page: 16 year: 2010 ident: bib0105 article-title: Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes publication-title: BMC Med Inform Decis Mak – year: 2007 ident: bib0165 article-title: Thiel and Bernd, Wiswedel. KNIME: The Konstanz Information Miner. Studies in Classification, Data Analysis, and Knowledge Organization (GfKL 2007). – volume: 314 start-page: 533 year: 1997 end-page: 534 ident: bib0050 article-title: Screening could seriously damage your health publication-title: BMJ – volume: 36 start-page: 35 year: 1996 end-page: 41 ident: bib0100 article-title: Using neural networks to predict the onset of diabetes mellitus publication-title: J Chem Inform Comput Sci – volume: 24 start-page: 451 year: 2007 end-page: 463 ident: bib0025 article-title: International Diabetes Federation: a consensus on type 2 diabetes prevention publication-title: Diabet Med – volume: 23 start-page: 277 year: 2001 end-page: 293 ident: bib0090 article-title: A sequential neural network model for diabetes prediction publication-title: Artif Intell Med – volume: 5 start-page: 1549 year: 2011 end-page: 1556 ident: bib0175 article-title: Data-mining technologies for diabetes: a systematic review publication-title: J Diabetes Sci Technol – volume: 46 start-page: 201 year: 2009 end-page: 215 ident: bib0180 article-title: Prediction of periventricular leukomalacia. Part I: selection of hemodynamic features using logistic regression and decision tree algorithms publication-title: Artif Intell Med – volume: 26 start-page: 84 year: 2012 end-page: 90 ident: bib0210 article-title: Family history of diabetes modifies the effect of blood pressure for incident diabetes in Middle Eastern women: Tehran Lipid and Glucose Study publication-title: J Hum Hypertens – volume: 9 start-page: 186 year: 2009 ident: bib0145 article-title: Population-based incidence of type 2 diabetes and its associated risk factors: results from a six-year cohort study in Iran publication-title: BMC Public Health – volume: 51 start-page: 1075 year: 2006 end-page: 1092 ident: bib0110 article-title: Data mining for the diagnosis of type II diabetes from three-dimensional body surface anthropometrical scanning data publication-title: Comput Math Appl – volume: 26 start-page: 37 year: 2002 end-page: 54 ident: bib0085 article-title: Data mining a diabetic data warehouse publication-title: Artif Intell Med – volume: 375 start-page: 2215 year: 2010 end-page: 2222 ident: bib0015 article-title: Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies publication-title: Lancet – year: 2008 ident: bib0040 article-title: Action plan for the global strategy for the prevention and control of non communicable diseases – volume: 345 start-page: e5900 year: 2012 ident: bib0035 article-title: Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study publication-title: BMJ – volume: 125 start-page: 851 year: 2012 end-page: 857 ident: bib0170 article-title: Performance comparison between logistic regression, decision trees, and multilayer perceptron in predicting peripheral neuropathy in type 2 diabetes mellitus publication-title: Chin Med J (Engl) – volume: 47 start-page: 408 year: 2002 ident: 10.1016/j.diabres.2014.07.003_bib0140 article-title: Cardiovascular risk factors in an Iranian urban population: Tehran lipid and glucose study (phase 1) publication-title: Soz Praventivmed doi: 10.1007/s000380200008 – volume: 125 start-page: 851 year: 2012 ident: 10.1016/j.diabres.2014.07.003_bib0170 article-title: Performance comparison between logistic regression, decision trees, and multilayer perceptron in predicting peripheral neuropathy in type 2 diabetes mellitus publication-title: Chin Med J (Engl) – volume: 9 start-page: 186 year: 2009 ident: 10.1016/j.diabres.2014.07.003_bib0145 article-title: Population-based incidence of type 2 diabetes and its associated risk factors: results from a six-year cohort study in Iran publication-title: BMC Public Health doi: 10.1186/1471-2458-9-186 – ident: 10.1016/j.diabres.2014.07.003_bib0045 – volume: 34 start-page: 113 year: 2005 ident: 10.1016/j.diabres.2014.07.003_bib0060 article-title: Predicting breast cancer survivability: a comparison of three data mining methods publication-title: Artif Intell Med doi: 10.1016/j.artmed.2004.07.002 – volume: 103 start-page: 137 issue: 2 year: 2014 ident: 10.1016/j.diabres.2014.07.003_bib0005 article-title: Global estimates of diabetes prevalence in adults for 2013 and projections for 2035 for the IDF Diabetes Atlas publication-title: Diabetes Res Clin Pract doi: 10.1016/j.diabres.2013.11.002 – volume: 368 start-page: 29 year: 2006 ident: 10.1016/j.diabres.2014.07.003_bib0020 article-title: Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study publication-title: Lancet doi: 10.1016/S0140-6736(06)68967-8 – year: 1977 ident: 10.1016/j.diabres.2014.07.003_bib0155 – ident: 10.1016/j.diabres.2014.07.003_bib0135 doi: 10.2337/diacare.20.7.1183 – volume: 20 start-page: 381 year: 2006 ident: 10.1016/j.diabres.2014.07.003_bib0195 article-title: Evaluation of classifiers for an uneven class distribution problem publication-title: Appl Artif Intell doi: 10.1080/08839510500313653 – volume: 375 start-page: 2215 year: 2010 ident: 10.1016/j.diabres.2014.07.003_bib0015 article-title: Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies publication-title: Lancet doi: 10.1016/S0140-6736(10)60484-9 – year: 2007 ident: 10.1016/j.diabres.2014.07.003_bib0220 – volume: 46 start-page: 201 year: 2009 ident: 10.1016/j.diabres.2014.07.003_bib0180 article-title: Prediction of periventricular leukomalacia. Part I: selection of hemodynamic features using logistic regression and decision tree algorithms publication-title: Artif Intell Med doi: 10.1016/j.artmed.2008.12.005 – volume: 26 start-page: 3160 year: 2003 ident: 10.1016/j.diabres.2014.07.003_bib0200 article-title: Expert committee on the diagnosis and classification of diabetes mellitus. Follow-up report on the diagnosis of diabetes mellitus publication-title: Diabetes Care doi: 10.2337/diacare.26.11.3160 – volume: 34 start-page: 541 year: 2010 ident: 10.1016/j.diabres.2014.07.003_bib0075 article-title: Can neural network able to estimate the prognosis of epilepsy patients according to risk factors? publication-title: J Med Syst doi: 10.1007/s10916-009-9267-8 – volume: 26 start-page: 37 year: 2002 ident: 10.1016/j.diabres.2014.07.003_bib0085 article-title: Data mining a diabetic data warehouse publication-title: Artif Intell Med doi: 10.1016/S0933-3657(02)00051-9 – volume: 29 start-page: 93 year: 2013 ident: 10.1016/j.diabres.2014.07.003_bib0080 article-title: Comparison of three data mining models for predicting diabetes or prediabetes by risk factors publication-title: Kaohsiung J Med Sci doi: 10.1016/j.kjms.2012.08.016 – volume: 36 start-page: 35 year: 1996 ident: 10.1016/j.diabres.2014.07.003_bib0100 article-title: Using neural networks to predict the onset of diabetes mellitus publication-title: J Chem Inform Comput Sci doi: 10.1021/ci950063e – volume: 23 start-page: 277 year: 2001 ident: 10.1016/j.diabres.2014.07.003_bib0090 article-title: A sequential neural network model for diabetes prediction publication-title: Artif Intell Med doi: 10.1016/S0933-3657(01)00086-0 – volume: 51 start-page: 1075 year: 2006 ident: 10.1016/j.diabres.2014.07.003_bib0110 article-title: Data mining for the diagnosis of type II diabetes from three-dimensional body surface anthropometrical scanning data publication-title: Comput Math Appl doi: 10.1016/j.camwa.2005.08.034 – volume: 354 start-page: 622 year: 1999 ident: 10.1016/j.diabres.2014.07.003_bib0205 article-title: Cardiovascular disease in older adults with glucose disorders: comparison of American Diabetes Association criteria for diabetes mellitus with WHO criteria publication-title: Lancet doi: 10.1016/S0140-6736(98)12030-5 – volume: 16 start-page: 3 year: 1999 ident: 10.1016/j.diabres.2014.07.003_bib0190 article-title: Selected techniques for data mining in medicine publication-title: Artif Intell Med doi: 10.1016/S0933-3657(98)00062-1 – volume: 10 start-page: 5 year: 2009 ident: 10.1016/j.diabres.2014.07.003_bib0130 article-title: Prevention of non communicable disease in a population in nutrition transition: Tehran lipid and glucose study phase II publication-title: Trials doi: 10.1186/1745-6215-10-5 – year: 1984 ident: 10.1016/j.diabres.2014.07.003_bib0185 – volume: 36 start-page: 2431 year: 2012 ident: 10.1016/j.diabres.2014.07.003_bib0125 article-title: Data mining in healthcare and biomedicine: a survey of the literature publication-title: J Med Syst doi: 10.1007/s10916-011-9710-5 – year: 2001 ident: 10.1016/j.diabres.2014.07.003_bib0115 – volume: 38 start-page: 5507 year: 2011 ident: 10.1016/j.diabres.2014.07.003_bib0070 article-title: Using data mining techniques for multi-diseases prediction modeling of hypertension and hyperlipidemia by common risk factors publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.10.086 – volume: 26 start-page: 455 year: 2004 ident: 10.1016/j.diabres.2014.07.003_bib0095 article-title: Artificial intelligence technology as a tool for initial GDM screening publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2003.10.005 – volume: 28 start-page: 201 year: 2005 ident: 10.1016/j.diabres.2014.07.003_bib0120 article-title: Tuberculosis transmission in nontraditional settings: a decision-tree approach publication-title: Am J Prev Med doi: 10.1016/j.amepre.2004.10.011 – volume: 26 start-page: 84 year: 2012 ident: 10.1016/j.diabres.2014.07.003_bib0210 article-title: Family history of diabetes modifies the effect of blood pressure for incident diabetes in Middle Eastern women: Tehran Lipid and Glucose Study publication-title: J Hum Hypertens doi: 10.1038/jhh.2011.4 – volume: 24 start-page: 451 year: 2007 ident: 10.1016/j.diabres.2014.07.003_bib0025 article-title: International Diabetes Federation: a consensus on type 2 diabetes prevention publication-title: Diabet Med doi: 10.1111/j.1464-5491.2007.02157.x – volume: 343 start-page: d7163 year: 2011 ident: 10.1016/j.diabres.2014.07.003_bib0030 article-title: Risk models and scores for type 2 diabetes: systematic review publication-title: BMJ doi: 10.1136/bmj.d7163 – volume: 26 start-page: 445 issue: 5 year: 2002 ident: 10.1016/j.diabres.2014.07.003_bib0215 article-title: Decision trees: an overview and their use in medicine publication-title: J Med Syst doi: 10.1023/A:1016409317640 – volume: 100 start-page: 10574 year: 2003 ident: 10.1016/j.diabres.2014.07.003_bib0010 article-title: Effectiveness of diabetes mellitus screening recommendations publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1733839100 – volume: 314 start-page: 533 year: 1997 ident: 10.1016/j.diabres.2014.07.003_bib0050 article-title: Screening could seriously damage your health publication-title: BMJ doi: 10.1136/bmj.314.7080.533 – volume: 38 start-page: 5384 year: 2011 ident: 10.1016/j.diabres.2014.07.003_bib0065 article-title: Exploring the risk factors of preterm birth using data mining publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.10.017 – volume: 5 start-page: 1549 year: 2011 ident: 10.1016/j.diabres.2014.07.003_bib0175 article-title: Data-mining technologies for diabetes: a systematic review publication-title: J Diabetes Sci Technol doi: 10.1177/193229681100500631 – volume: 8 start-page: 176 year: 2008 ident: 10.1016/j.diabres.2014.07.003_bib0150 article-title: High prevalence of undiagnosed diabetes and abnormal glucose tolerance in the Iranian urban population: Tehran Lipid and Glucose Study publication-title: BMC Public Health doi: 10.1186/1471-2458-8-176 – volume: 345 start-page: e5900 year: 2012 ident: 10.1016/j.diabres.2014.07.003_bib0035 article-title: Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study publication-title: BMJ doi: 10.1136/bmj.e5900 – year: 2008 ident: 10.1016/j.diabres.2014.07.003_bib0040 – volume: 77 start-page: 81 year: 2008 ident: 10.1016/j.diabres.2014.07.003_bib0055 article-title: Predictive data mining in clinical medicine: current issues and guidelines publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2006.11.006 – ident: 10.1016/j.diabres.2014.07.003_bib0160 – year: 2007 ident: 10.1016/j.diabres.2014.07.003_bib0165 – volume: 10 start-page: 16 year: 2010 ident: 10.1016/j.diabres.2014.07.003_bib0105 article-title: Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes publication-title: BMC Med Inform Decis Mak doi: 10.1186/1472-6947-10-16 |
SSID | ssj0006345 |
Score | 2.345397 |
Snippet | The aim of this study was to create a prediction model using data mining approach to identify low risk individuals for incidence of type 2 diabetes, using the... Abstract Aims The aim of this study was to create a prediction model using data mining approach to identify low risk individuals for incidence of type 2... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 391 |
SubjectTerms | Adult Aged Arterial Pressure Blood Glucose - analysis Body Mass Index Body Weights and Measures Computational Biology Data Mining Decision Support Techniques Decision tree Decision Trees Diabetes Mellitus, Type 2 - diagnosis Diabetes Mellitus, Type 2 - epidemiology Educational Status Employment Endocrinology & Metabolism Female Humans Incidence Iran - epidemiology Longitudinal Studies Male Marital Status Middle Aged Prediction model Risk Factors Sensitivity and Specificity Smoking Triglycerides - blood Type 2 diabetes |
Title | Applying decision tree for identification of a low risk population for type 2 diabetes. Tehran Lipid and Glucose Study |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0168822714002976 https://www.clinicalkey.es/playcontent/1-s2.0-S0168822714002976 https://dx.doi.org/10.1016/j.diabres.2014.07.003 https://www.ncbi.nlm.nih.gov/pubmed/25085758 https://www.proquest.com/docview/1563991796 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5Bkaa9TBuwrfuBDmmvaRPHTtNHhMY6ELwAEm_WJXa0IpRWaxniZX_77hInaGIT097aKldHvvPdZ_u7O4BP2pnYu4SihA0i0oWPI0bVeeTzcqp9rpzWkuB8epbNLvXxlbnagMMuF0ZolcH3tz698dbhl3GYzfFyPh-fM1hheKik4px0YMo2YUul08wMYOvg68nsrHfIWapbJiO_gwg8JPKMr0dyxMkbWyF56aaMZ9c-63GI-hsEbULR0Ut4ETAkHrSv-Qo2fL0Nz07DLfkO_BBoKelL6EIHHZS7Z2R8inMX6EGNRnBRIeHN4g6FYo7LvptX86wcz6LC7nh2hBf-G4c2lH7XDql2-KUlvKOwEe934fLo88XhLAr9FaLSaL2OlC6VbOeULzTFRcUfjPE0JRcT8dKMjZoQZanjLSLxxsdVWVwpmnLgo5T0JH0Ng3pR-7eAKWtaubLMFZGUfyFTFLlzScUQoygyNQTdTaktQ_Fx6YFxYzuW2bUNmrCiCRvLtXg6hFEvtmyrbzwlkHX6sl1qKTtDy_HhKcHJnwT9KizplU3sStnYPjK7IeS95G-W-y-D7ncmZXlVy1UN1X5xy4MZQY7sLPnv37S21k8Ag1Zpq5q_-_-B38Nz-dZy5T7AYP391n9kcLUu9mBz9DPZC0voF5dFIu4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6FNh2GfZe1j04YFcnjiw5zrEo2qZrk8tSoDeBtmQ0ReEES7ph_36kLXsY2qHDboZtWoZIkR8lPgA-a2di70YUjVggIp37OGJUnUU-KybaZ8ppLQnOs3k6PddfLszFDhy0uTASVhl0f6PTa20d7gzDbA7Xy-XwK4MVhodKKs5JB6b0Aexqw95eD3b3T06n804hp4luIhn5H4TgdyLP8GogW5zs2EqQl67LeLbts26bqL9B0NoUHT2FJwFD4n7zm89gx1fP4eEsnJK_gO8CLSV9CV3ooINy9oyMT3HpQnhQzRFclUh4vfqBEmKO666bV_2ubM-iwnZ7doALf8mmDaXftUOqHB43Ae8o0Yg_X8L50eHiYBqF_gpRYbTeRkoXStw55XNNcV7yhTGeJuRiIl6asVFjojRx7CISOz6uTONS0YQNHyWkx8kr6FWryr8BTJjTyhVFpoik_AuZPM-cG5UMMfI8VX3Q7ZTaIhQflx4Y17aNMruygRNWOGFjORZP-jDoyNZN9Y37CNKWX7ZNLWVlaNk-3Ec4vovQb8KS3tiR3Sgb21ti14eso_xDcv9l0E-tSFle1XJUQ5Vf3fBgRpAjK0v-_OtG1roJYNAqbVWzt_8_8Ed4NF3MzuzZyfx0Dx7LkyZu7h30tt9u_HsGWtv8Q1hIvwCLqSTd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+decision+tree+for+identification+of+a+low+risk+population+for+type+2+diabetes.+Tehran+Lipid+and+Glucose+Study&rft.jtitle=Diabetes+research+and+clinical+practice&rft.au=Ramezankhani%2C+Azra&rft.au=Pournik%2C+Omid&rft.au=Shahrabi%2C+Jamal&rft.au=Khalili%2C+Davood&rft.date=2014-09-01&rft.issn=0168-8227&rft.volume=105&rft.issue=3&rft.spage=391&rft.epage=398&rft_id=info:doi/10.1016%2Fj.diabres.2014.07.003&rft.externalDBID=ECK1-s2.0-S0168822714002976&rft.externalDocID=1_s2_0_S0168822714002976 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01688227%2FS0168822714X00112%2Fcov150h.gif |