Applying decision tree for identification of a low risk population for type 2 diabetes. Tehran Lipid and Glucose Study

The aim of this study was to create a prediction model using data mining approach to identify low risk individuals for incidence of type 2 diabetes, using the Tehran Lipid and Glucose Study (TLGS) database. For a 6647 population without diabetes, aged ≥20 years, followed for 12 years, a prediction m...

Full description

Saved in:
Bibliographic Details
Published inDiabetes research and clinical practice Vol. 105; no. 3; pp. 391 - 398
Main Authors Ramezankhani, Azra, Pournik, Omid, Shahrabi, Jamal, Khalili, Davood, Azizi, Fereidoun, Hadaegh, Farzad
Format Journal Article
LanguageEnglish
Published Ireland Elsevier Ireland Ltd 01.09.2014
Subjects
Online AccessGet full text
ISSN0168-8227
1872-8227
1872-8227
DOI10.1016/j.diabres.2014.07.003

Cover

Abstract The aim of this study was to create a prediction model using data mining approach to identify low risk individuals for incidence of type 2 diabetes, using the Tehran Lipid and Glucose Study (TLGS) database. For a 6647 population without diabetes, aged ≥20 years, followed for 12 years, a prediction model was developed using classification by the decision tree technique. Seven hundred and twenty-nine (11%) diabetes cases occurred during the follow-up. Predictor variables were selected from demographic characteristics, smoking status, medical and drug history and laboratory measures. We developed the predictive models by decision tree using 60 input variables and one output variable. The overall classification accuracy was 90.5%, with 31.1% sensitivity, 97.9% specificity; and for the subjects without diabetes, precision and f-measure were 92% and 0.95, respectively. The identified variables included fasting plasma glucose, body mass index, triglycerides, mean arterial blood pressure, family history of diabetes, educational level and job status. In conclusion, decision tree analysis, using routine demographic, clinical, anthropometric and laboratory measurements, created a simple tool to predict individuals at low risk for type 2 diabetes.
AbstractList Abstract Aims The aim of this study was to create a prediction model using data mining approach to identify low risk individuals for incidence of type 2 diabetes, using the Tehran Lipid and Glucose Study (TLGS) database. Methods For a 6647 population without diabetes, aged ≥20 years, followed for 12 years, a prediction model was developed using classification by the decision tree technique. Seven hundred and twenty-nine (11%) diabetes cases occurred during the follow-up. Predictor variables were selected from demographic characteristics, smoking status, medical and drug history and laboratory measures. Results We developed the predictive models by decision tree using 60 input variables and one output variable. The overall classification accuracy was 90.5%, with 31.1% sensitivity, 97.9% specificity; and for the subjects without diabetes, precision and f -measure were 92% and 0.95, respectively. The identified variables included fasting plasma glucose, body mass index, triglycerides, mean arterial blood pressure, family history of diabetes, educational level and job status. Conclusions In conclusion, decision tree analysis, using routine demographic, clinical, anthropometric and laboratory measurements, created a simple tool to predict individuals at low risk for type 2 diabetes.
The aim of this study was to create a prediction model using data mining approach to identify low risk individuals for incidence of type 2 diabetes, using the Tehran Lipid and Glucose Study (TLGS) database. For a 6647 population without diabetes, aged ≥20 years, followed for 12 years, a prediction model was developed using classification by the decision tree technique. Seven hundred and twenty-nine (11%) diabetes cases occurred during the follow-up. Predictor variables were selected from demographic characteristics, smoking status, medical and drug history and laboratory measures. We developed the predictive models by decision tree using 60 input variables and one output variable. The overall classification accuracy was 90.5%, with 31.1% sensitivity, 97.9% specificity; and for the subjects without diabetes, precision and f-measure were 92% and 0.95, respectively. The identified variables included fasting plasma glucose, body mass index, triglycerides, mean arterial blood pressure, family history of diabetes, educational level and job status. In conclusion, decision tree analysis, using routine demographic, clinical, anthropometric and laboratory measurements, created a simple tool to predict individuals at low risk for type 2 diabetes.
The aim of this study was to create a prediction model using data mining approach to identify low risk individuals for incidence of type 2 diabetes, using the Tehran Lipid and Glucose Study (TLGS) database.AIMSThe aim of this study was to create a prediction model using data mining approach to identify low risk individuals for incidence of type 2 diabetes, using the Tehran Lipid and Glucose Study (TLGS) database.For a 6647 population without diabetes, aged ≥20 years, followed for 12 years, a prediction model was developed using classification by the decision tree technique. Seven hundred and twenty-nine (11%) diabetes cases occurred during the follow-up. Predictor variables were selected from demographic characteristics, smoking status, medical and drug history and laboratory measures.METHODSFor a 6647 population without diabetes, aged ≥20 years, followed for 12 years, a prediction model was developed using classification by the decision tree technique. Seven hundred and twenty-nine (11%) diabetes cases occurred during the follow-up. Predictor variables were selected from demographic characteristics, smoking status, medical and drug history and laboratory measures.We developed the predictive models by decision tree using 60 input variables and one output variable. The overall classification accuracy was 90.5%, with 31.1% sensitivity, 97.9% specificity; and for the subjects without diabetes, precision and f-measure were 92% and 0.95, respectively. The identified variables included fasting plasma glucose, body mass index, triglycerides, mean arterial blood pressure, family history of diabetes, educational level and job status.RESULTSWe developed the predictive models by decision tree using 60 input variables and one output variable. The overall classification accuracy was 90.5%, with 31.1% sensitivity, 97.9% specificity; and for the subjects without diabetes, precision and f-measure were 92% and 0.95, respectively. The identified variables included fasting plasma glucose, body mass index, triglycerides, mean arterial blood pressure, family history of diabetes, educational level and job status.In conclusion, decision tree analysis, using routine demographic, clinical, anthropometric and laboratory measurements, created a simple tool to predict individuals at low risk for type 2 diabetes.CONCLUSIONSIn conclusion, decision tree analysis, using routine demographic, clinical, anthropometric and laboratory measurements, created a simple tool to predict individuals at low risk for type 2 diabetes.
Author Azizi, Fereidoun
Ramezankhani, Azra
Khalili, Davood
Hadaegh, Farzad
Shahrabi, Jamal
Pournik, Omid
Author_xml – sequence: 1
  givenname: Azra
  surname: Ramezankhani
  fullname: Ramezankhani, Azra
  organization: Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
– sequence: 2
  givenname: Omid
  surname: Pournik
  fullname: Pournik, Omid
  organization: Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
– sequence: 3
  givenname: Jamal
  surname: Shahrabi
  fullname: Shahrabi, Jamal
  organization: Industrial Engineering Department, Amirkabir University of Technology, Tehran, Iran
– sequence: 4
  givenname: Davood
  surname: Khalili
  fullname: Khalili, Davood
  organization: Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
– sequence: 5
  givenname: Fereidoun
  surname: Azizi
  fullname: Azizi, Fereidoun
  organization: Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
– sequence: 6
  givenname: Farzad
  surname: Hadaegh
  fullname: Hadaegh, Farzad
  email: fzhadaegh@endocrine.ac.ir, farzadhadaegh@gmail.com
  organization: Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25085758$$D View this record in MEDLINE/PubMed
BookMark eNqNkl9rFDEUxYNU7Lb6EZQ8-rLjTeZPZhCVUrQKCz60PodsckeznU3GJFOZb2-mu_pQkPqUS_I7h8s5OSMnzjsk5CWDggFr3uwKY9U2YCw4sKoAUQCUT8iKtYKvW87FCVllrr2fT8lZjDsAaMqqfkZOeQ1tLep2Re4uxnGYrftODWobrXc0BUTa-0CtQZdsb7VKy73vqaKD_0WDjbd09OM0HB4WNs0jUk6XnTDlpegN_gjK0Y0draHKGXo1TNpHpNdpMvNz8rRXQ8QXx_OcfPv08eby83rz9erL5cVmreuqSmteaQ6CCY7bSsG2z0Ndo-qUAaVK1kHNhVJNaRgI1fDG9A30XHVlxVSpKlGek9cH3zH4nxPGJPc2ahwG5dBPUbK6KbuOia7J6KsjOm33aOQY7F6FWf7JKgP1AdDBxxiw_4swkEsnciePncilEwlC5k6y7u0DnbbpPrkUlB0eVX84qDHHdGcxyKgtOo3GBtRJGm8fdXj_wEEP1uVWh1ucMe78FFzuQDIZuQR5vfya5dOwCoB3Yknm3b8N_mOB3-Lj1Ks
CitedBy_id crossref_primary_10_1155_2021_6053824
crossref_primary_10_1136_bmjopen_2016_013336
crossref_primary_10_3390_ijerph192114280
crossref_primary_10_1016_j_obmed_2019_100152
crossref_primary_10_1016_j_hlpt_2021_01_001
crossref_primary_10_2139_ssrn_4119296
crossref_primary_10_1016_j_cmpb_2016_10_020
crossref_primary_10_1016_j_aogh_2015_10_003
crossref_primary_10_1155_2019_4248218
crossref_primary_10_1007_s00038_017_1040_z
crossref_primary_10_1016_j_cmpb_2022_107180
crossref_primary_10_3389_fpubh_2022_846118
crossref_primary_10_1016_j_endinu_2019_12_011
crossref_primary_10_7189_jogh_12_04068
crossref_primary_10_1016_j_artmed_2022_102461
crossref_primary_10_1016_j_actatropica_2018_03_017
crossref_primary_10_1038_s41598_017_03577_0
crossref_primary_10_1093_ajh_hpz004
crossref_primary_10_1155_2021_1999284
crossref_primary_10_1016_j_endien_2021_06_001
crossref_primary_10_2147_DMSO_S320808
crossref_primary_10_12674_ptk_2020_27_2_140
crossref_primary_10_1007_s11367_019_01591_0
crossref_primary_10_1080_01480545_2020_1783286
crossref_primary_10_1007_s11906_019_1006_z
crossref_primary_10_1038_s41598_020_61123_x
crossref_primary_10_1002_biof_1540
crossref_primary_10_1186_s13098_024_01516_4
crossref_primary_10_1186_s13098_025_01583_1
crossref_primary_10_1186_s12967_017_1346_x
crossref_primary_10_2147_DMSO_S279329
crossref_primary_10_1080_00015385_2023_2246199
crossref_primary_10_1186_s12911_019_0790_3
crossref_primary_10_1016_j_cmpb_2017_02_001
crossref_primary_10_1111_1759_7714_13991
crossref_primary_10_1155_2020_6873891
crossref_primary_10_3390_a17110519
crossref_primary_10_1038_s41746_023_00933_5
crossref_primary_10_1016_j_compbiomed_2021_104527
crossref_primary_10_1080_10408363_2020_1857681
crossref_primary_10_3390_sym12010067
crossref_primary_10_5812_ijem_25389
crossref_primary_10_1016_j_jcrc_2017_02_019
crossref_primary_10_3349_ymj_2023_0246
crossref_primary_10_5812_ijem_84784
crossref_primary_10_4258_hir_2017_23_1_43
crossref_primary_10_1007_s11042_024_19766_9
crossref_primary_10_1007_s00580_017_2580_6
crossref_primary_10_1590_1516_3180_2016_0309010217
crossref_primary_10_1111_jch_13662
Cites_doi 10.1007/s000380200008
10.1186/1471-2458-9-186
10.1016/j.artmed.2004.07.002
10.1016/j.diabres.2013.11.002
10.1016/S0140-6736(06)68967-8
10.2337/diacare.20.7.1183
10.1080/08839510500313653
10.1016/S0140-6736(10)60484-9
10.1016/j.artmed.2008.12.005
10.2337/diacare.26.11.3160
10.1007/s10916-009-9267-8
10.1016/S0933-3657(02)00051-9
10.1016/j.kjms.2012.08.016
10.1021/ci950063e
10.1016/S0933-3657(01)00086-0
10.1016/j.camwa.2005.08.034
10.1016/S0140-6736(98)12030-5
10.1016/S0933-3657(98)00062-1
10.1186/1745-6215-10-5
10.1007/s10916-011-9710-5
10.1016/j.eswa.2010.10.086
10.1016/j.eswa.2003.10.005
10.1016/j.amepre.2004.10.011
10.1038/jhh.2011.4
10.1111/j.1464-5491.2007.02157.x
10.1136/bmj.d7163
10.1023/A:1016409317640
10.1073/pnas.1733839100
10.1136/bmj.314.7080.533
10.1016/j.eswa.2010.10.017
10.1177/193229681100500631
10.1186/1471-2458-8-176
10.1136/bmj.e5900
10.1016/j.ijmedinf.2006.11.006
10.1186/1472-6947-10-16
ContentType Journal Article
Copyright 2014 Elsevier Ireland Ltd
Elsevier Ireland Ltd
Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Ireland Ltd
– notice: Elsevier Ireland Ltd
– notice: Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.diabres.2014.07.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-8227
EndPage 398
ExternalDocumentID 25085758
10_1016_j_diabres_2014_07_003
S0168822714002976
1_s2_0_S0168822714002976
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
6PF
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
ADVLN
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LZ1
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OB0
ON-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
WUQ
X7M
Z5R
ZGI
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
DOVZS
EFLBG
LCYCR
ZA5
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c544t-24c207172eb4a0bf72e55ea9ad0aa3190527aa63d107a626df60f2a9341a3a473
IEDL.DBID AIKHN
ISSN 0168-8227
1872-8227
IngestDate Thu Sep 04 20:50:17 EDT 2025
Mon Jul 21 06:07:15 EDT 2025
Thu Apr 24 22:53:54 EDT 2025
Tue Jul 01 01:02:32 EDT 2025
Fri Feb 23 02:17:20 EST 2024
Sun Feb 23 10:20:03 EST 2025
Tue Aug 26 16:33:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Type 2 diabetes
Decision tree
Prediction model
Language English
License Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c544t-24c207172eb4a0bf72e55ea9ad0aa3190527aa63d107a626df60f2a9341a3a473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25085758
PQID 1563991796
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1563991796
pubmed_primary_25085758
crossref_primary_10_1016_j_diabres_2014_07_003
crossref_citationtrail_10_1016_j_diabres_2014_07_003
elsevier_sciencedirect_doi_10_1016_j_diabres_2014_07_003
elsevier_clinicalkeyesjournals_1_s2_0_S0168822714002976
elsevier_clinicalkey_doi_10_1016_j_diabres_2014_07_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Diabetes research and clinical practice
PublicationTitleAlternate Diabetes Res Clin Pract
PublicationYear 2014
Publisher Elsevier Ireland Ltd
Publisher_xml – name: Elsevier Ireland Ltd
References Delen, Walker, Kadam (bib0060) 2005; 34
Meng, Huang, Rao, Zhang, Liu (bib0080) 2013; 29
Han, Kamber (bib0115) 2001
Park, Edington (bib0090) 2001; 23
Yoo, Alafaireet, Marinov, Pena-Hernandez, Gopidi, Chang (bib0125) 2012; 36
Hadaegh, Bozorgmanesh, Ghasemi, Harati, Saadat, Azizi (bib0150) 2008; 8
Podgorelec, Kokol, Stiglic, Rozman (bib0215) 2002; 26
Chen, Chuang, Yang, Wu (bib0065) 2011; 38
Noble, Mathur, Dent, Meads, Greenhalgh (bib0030) 2011; 343
Yu, Liu, Valdez, Gwinn, Khoury (bib0105) 2010; 10
Dallo, Weller (bib0010) 2003; 100
Daskalaki, Kopanas, Avouris (bib0195) 2006; 20
Report of the Expert Committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 1997;20:1183–1197.
Barzilay, Spiekerman, Wahl, Kuller, Cushman, Furberg (bib0205) 1999; 354
Samanta, Bird, Kuijpers, Zimmerman, Jarvik, Wernovsky (bib0180) 2009; 46
Tukey (bib0155) 1977
Breiman, Friedman, Olsen, Stone (bib0185) 1984
Berner (bib0220) 2007
Azizi, Rahmani, Emami, Mirmiran, Hajipour, Madjid (bib0140) 2002; 47
Polak, Mendyk (bib0095) 2004; 26
[accessed 24.03.13].
Kammerer, McNabb, Becerra, Rosenblum, Shang, Iademarco (bib0120) 2005; 28
Booth, Kapral, Fung, Tu (bib0020) 2006; 368
Screening for type 2 diabetes. Report of a World Health Organization and International Diabetes Federation meeting; 2003.
Lavrac (bib0190) 1999; 16
Chang, Wang, Jiang (bib0070) 2011; 38
Shanker (bib0100) 1996; 36
(bib0040) 2008
Michael, Berthold, Cebron, Dill, Gabriel, Kötter (bib0165) 2007
Li, Zhi, Ma, Cui, Zhu, Zhang (bib0170) 2012; 125
Aslan, Bozdemir, Sahin, Ogulata (bib0075) 2010; 34
Bellazzi, Zupan (bib0055) 2008; 77
Marinov, Mosa, Yoo, Boren (bib0175) 2011; 5
Su, Yang, Hsu, Chiu (bib0110) 2006; 51
Genuth, Alberti, Bennett, Buse, Defronzo (bib0200) 2003; 26
Breault, Goodall, Fos, Breault, Goodall, Fos (bib0085) 2002; 26
Stewart-Brown, Farmer (bib0050) 1997; 314
Alberti, Zimmet, Shaw (bib0025) 2007; 24
Emerging Risk Factors Collaboration, Sarwar, Gao, Seshasai, Gobin, Kaptoge, Di Angelantonio (bib0015) 2010; 375
Abbasi, Peelen, Corpeleijn, van der Schouw, Stolk, Spijkerman (bib0035) 2012; 345
Azizi, Ghanbarian, Momenan, Hadaegh, Mirmiran, Hedayati (bib0130) 2009; 10
Guariguata, Whiting, Hambleton, Beagley, Linnenkamp, Shaw (bib0005) 2014; 103
Hatami, Hadaegh, Khalili, Sheikholeslami, Azizi (bib0210) 2012; 26
Harati, Hadaegh, Saadat, Azizi (bib0145) 2009; 9
Chang (10.1016/j.diabres.2014.07.003_bib0070) 2011; 38
Stewart-Brown (10.1016/j.diabres.2014.07.003_bib0050) 1997; 314
Azizi (10.1016/j.diabres.2014.07.003_bib0130) 2009; 10
Noble (10.1016/j.diabres.2014.07.003_bib0030) 2011; 343
Chen (10.1016/j.diabres.2014.07.003_bib0065) 2011; 38
Park (10.1016/j.diabres.2014.07.003_bib0090) 2001; 23
Meng (10.1016/j.diabres.2014.07.003_bib0080) 2013; 29
Emerging Risk Factors Collaboration (10.1016/j.diabres.2014.07.003_bib0015) 2010; 375
Kammerer (10.1016/j.diabres.2014.07.003_bib0120) 2005; 28
Alberti (10.1016/j.diabres.2014.07.003_bib0025) 2007; 24
Samanta (10.1016/j.diabres.2014.07.003_bib0180) 2009; 46
Polak (10.1016/j.diabres.2014.07.003_bib0095) 2004; 26
Harati (10.1016/j.diabres.2014.07.003_bib0145) 2009; 9
Booth (10.1016/j.diabres.2014.07.003_bib0020) 2006; 368
Su (10.1016/j.diabres.2014.07.003_bib0110) 2006; 51
Guariguata (10.1016/j.diabres.2014.07.003_bib0005) 2014; 103
10.1016/j.diabres.2014.07.003_bib0045
Li (10.1016/j.diabres.2014.07.003_bib0170) 2012; 125
10.1016/j.diabres.2014.07.003_bib0160
Michael (10.1016/j.diabres.2014.07.003_bib0165) 2007
Bellazzi (10.1016/j.diabres.2014.07.003_bib0055) 2008; 77
Tukey (10.1016/j.diabres.2014.07.003_bib0155) 1977
Dallo (10.1016/j.diabres.2014.07.003_bib0010) 2003; 100
Breault (10.1016/j.diabres.2014.07.003_bib0085) 2002; 26
Breiman (10.1016/j.diabres.2014.07.003_bib0185) 1984
Hadaegh (10.1016/j.diabres.2014.07.003_bib0150) 2008; 8
Daskalaki (10.1016/j.diabres.2014.07.003_bib0195) 2006; 20
Barzilay (10.1016/j.diabres.2014.07.003_bib0205) 1999; 354
Genuth (10.1016/j.diabres.2014.07.003_bib0200) 2003; 26
Lavrac (10.1016/j.diabres.2014.07.003_bib0190) 1999; 16
Podgorelec (10.1016/j.diabres.2014.07.003_bib0215) 2002; 26
Shanker (10.1016/j.diabres.2014.07.003_bib0100) 1996; 36
Yoo (10.1016/j.diabres.2014.07.003_bib0125) 2012; 36
Yu (10.1016/j.diabres.2014.07.003_bib0105) 2010; 10
Han (10.1016/j.diabres.2014.07.003_bib0115) 2001
Abbasi (10.1016/j.diabres.2014.07.003_bib0035) 2012; 345
Hatami (10.1016/j.diabres.2014.07.003_bib0210) 2012; 26
Berner (10.1016/j.diabres.2014.07.003_bib0220) 2007
Delen (10.1016/j.diabres.2014.07.003_bib0060) 2005; 34
Marinov (10.1016/j.diabres.2014.07.003_bib0175) 2011; 5
Aslan (10.1016/j.diabres.2014.07.003_bib0075) 2010; 34
10.1016/j.diabres.2014.07.003_bib0135
Azizi (10.1016/j.diabres.2014.07.003_bib0140) 2002; 47
(10.1016/j.diabres.2014.07.003_bib0040) 2008
References_xml – volume: 100
  start-page: 10574
  year: 2003
  end-page: 11059
  ident: bib0010
  article-title: Effectiveness of diabetes mellitus screening recommendations
  publication-title: Proc Natl Acad Sci USA
– reference: Screening for type 2 diabetes. Report of a World Health Organization and International Diabetes Federation meeting; 2003.
– year: 2001
  ident: bib0115
  article-title: Data mining: concepts and techniques (Morgan–Kaufman Series of Data Management Systems)
– year: 2007
  ident: bib0220
  article-title: Clinical decision support systems
– volume: 20
  start-page: 381
  year: 2006
  end-page: 417
  ident: bib0195
  article-title: Evaluation of classifiers for an uneven class distribution problem
  publication-title: Appl Artif Intell
– volume: 34
  start-page: 541
  year: 2010
  end-page: 550
  ident: bib0075
  article-title: Can neural network able to estimate the prognosis of epilepsy patients according to risk factors?
  publication-title: J Med Syst
– volume: 26
  start-page: 3160
  year: 2003
  end-page: 3167
  ident: bib0200
  article-title: Expert committee on the diagnosis and classification of diabetes mellitus. Follow-up report on the diagnosis of diabetes mellitus
  publication-title: Diabetes Care
– volume: 16
  start-page: 3
  year: 1999
  end-page: 23
  ident: bib0190
  article-title: Selected techniques for data mining in medicine
  publication-title: Artif Intell Med
– year: 1977
  ident: bib0155
  article-title: Exploratory data analysis
– volume: 36
  start-page: 2431
  year: 2012
  end-page: 2448
  ident: bib0125
  article-title: Data mining in healthcare and biomedicine: a survey of the literature
  publication-title: J Med Syst
– year: 1984
  ident: bib0185
  article-title: Classification and regression trees
– volume: 343
  start-page: d7163
  year: 2011
  ident: bib0030
  article-title: Risk models and scores for type 2 diabetes: systematic review
  publication-title: BMJ
– volume: 38
  start-page: 5384
  year: 2011
  end-page: 5387
  ident: bib0065
  article-title: Exploring the risk factors of preterm birth using data mining
  publication-title: Expert Syst Appl
– volume: 47
  start-page: 408
  year: 2002
  end-page: 426
  ident: bib0140
  article-title: Cardiovascular risk factors in an Iranian urban population: Tehran lipid and glucose study (phase 1)
  publication-title: Soz Praventivmed
– volume: 29
  start-page: 93
  year: 2013
  end-page: 99
  ident: bib0080
  article-title: Comparison of three data mining models for predicting diabetes or prediabetes by risk factors
  publication-title: Kaohsiung J Med Sci
– reference: Report of the Expert Committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 1997;20:1183–1197.
– volume: 77
  start-page: 81
  year: 2008
  end-page: 97
  ident: bib0055
  article-title: Predictive data mining in clinical medicine: current issues and guidelines
  publication-title: Int J Med Inform
– volume: 26
  start-page: 455
  year: 2004
  end-page: 460
  ident: bib0095
  article-title: Artificial intelligence technology as a tool for initial GDM screening
  publication-title: Expert Syst Appl
– volume: 103
  start-page: 137
  year: 2014
  end-page: 149
  ident: bib0005
  article-title: Global estimates of diabetes prevalence in adults for 2013 and projections for 2035 for the IDF Diabetes Atlas
  publication-title: Diabetes Res Clin Pract
– volume: 34
  start-page: 113
  year: 2005
  end-page: 127
  ident: bib0060
  article-title: Predicting breast cancer survivability: a comparison of three data mining methods
  publication-title: Artif Intell Med
– volume: 38
  start-page: 5507
  year: 2011
  end-page: 5513
  ident: bib0070
  article-title: Using data mining techniques for multi-diseases prediction modeling of hypertension and hyperlipidemia by common risk factors
  publication-title: Expert Syst Appl
– volume: 28
  start-page: 201
  year: 2005
  end-page: 207
  ident: bib0120
  article-title: Tuberculosis transmission in nontraditional settings: a decision-tree approach
  publication-title: Am J Prev Med
– volume: 368
  start-page: 29
  year: 2006
  end-page: 36
  ident: bib0020
  article-title: Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study
  publication-title: Lancet
– reference: [accessed 24.03.13].
– volume: 8
  start-page: 176
  year: 2008
  ident: bib0150
  article-title: High prevalence of undiagnosed diabetes and abnormal glucose tolerance in the Iranian urban population: Tehran Lipid and Glucose Study
  publication-title: BMC Public Health
– volume: 354
  start-page: 622
  year: 1999
  end-page: 625
  ident: bib0205
  article-title: Cardiovascular disease in older adults with glucose disorders: comparison of American Diabetes Association criteria for diabetes mellitus with WHO criteria
  publication-title: Lancet
– volume: 10
  start-page: 5
  year: 2009
  ident: bib0130
  article-title: Prevention of non communicable disease in a population in nutrition transition: Tehran lipid and glucose study phase II
  publication-title: Trials
– volume: 26
  start-page: 445
  year: 2002
  end-page: 446
  ident: bib0215
  article-title: Decision trees: an overview and their use in medicine
  publication-title: J Med Syst
– volume: 10
  start-page: 16
  year: 2010
  ident: bib0105
  article-title: Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes
  publication-title: BMC Med Inform Decis Mak
– year: 2007
  ident: bib0165
  article-title: Thiel and Bernd, Wiswedel. KNIME: The Konstanz Information Miner. Studies in Classification, Data Analysis, and Knowledge Organization (GfKL 2007).
– volume: 314
  start-page: 533
  year: 1997
  end-page: 534
  ident: bib0050
  article-title: Screening could seriously damage your health
  publication-title: BMJ
– volume: 36
  start-page: 35
  year: 1996
  end-page: 41
  ident: bib0100
  article-title: Using neural networks to predict the onset of diabetes mellitus
  publication-title: J Chem Inform Comput Sci
– volume: 24
  start-page: 451
  year: 2007
  end-page: 463
  ident: bib0025
  article-title: International Diabetes Federation: a consensus on type 2 diabetes prevention
  publication-title: Diabet Med
– volume: 23
  start-page: 277
  year: 2001
  end-page: 293
  ident: bib0090
  article-title: A sequential neural network model for diabetes prediction
  publication-title: Artif Intell Med
– volume: 5
  start-page: 1549
  year: 2011
  end-page: 1556
  ident: bib0175
  article-title: Data-mining technologies for diabetes: a systematic review
  publication-title: J Diabetes Sci Technol
– volume: 46
  start-page: 201
  year: 2009
  end-page: 215
  ident: bib0180
  article-title: Prediction of periventricular leukomalacia. Part I: selection of hemodynamic features using logistic regression and decision tree algorithms
  publication-title: Artif Intell Med
– volume: 26
  start-page: 84
  year: 2012
  end-page: 90
  ident: bib0210
  article-title: Family history of diabetes modifies the effect of blood pressure for incident diabetes in Middle Eastern women: Tehran Lipid and Glucose Study
  publication-title: J Hum Hypertens
– volume: 9
  start-page: 186
  year: 2009
  ident: bib0145
  article-title: Population-based incidence of type 2 diabetes and its associated risk factors: results from a six-year cohort study in Iran
  publication-title: BMC Public Health
– volume: 51
  start-page: 1075
  year: 2006
  end-page: 1092
  ident: bib0110
  article-title: Data mining for the diagnosis of type II diabetes from three-dimensional body surface anthropometrical scanning data
  publication-title: Comput Math Appl
– volume: 26
  start-page: 37
  year: 2002
  end-page: 54
  ident: bib0085
  article-title: Data mining a diabetic data warehouse
  publication-title: Artif Intell Med
– volume: 375
  start-page: 2215
  year: 2010
  end-page: 2222
  ident: bib0015
  article-title: Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies
  publication-title: Lancet
– year: 2008
  ident: bib0040
  article-title: Action plan for the global strategy for the prevention and control of non communicable diseases
– volume: 345
  start-page: e5900
  year: 2012
  ident: bib0035
  article-title: Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study
  publication-title: BMJ
– volume: 125
  start-page: 851
  year: 2012
  end-page: 857
  ident: bib0170
  article-title: Performance comparison between logistic regression, decision trees, and multilayer perceptron in predicting peripheral neuropathy in type 2 diabetes mellitus
  publication-title: Chin Med J (Engl)
– volume: 47
  start-page: 408
  year: 2002
  ident: 10.1016/j.diabres.2014.07.003_bib0140
  article-title: Cardiovascular risk factors in an Iranian urban population: Tehran lipid and glucose study (phase 1)
  publication-title: Soz Praventivmed
  doi: 10.1007/s000380200008
– volume: 125
  start-page: 851
  year: 2012
  ident: 10.1016/j.diabres.2014.07.003_bib0170
  article-title: Performance comparison between logistic regression, decision trees, and multilayer perceptron in predicting peripheral neuropathy in type 2 diabetes mellitus
  publication-title: Chin Med J (Engl)
– volume: 9
  start-page: 186
  year: 2009
  ident: 10.1016/j.diabres.2014.07.003_bib0145
  article-title: Population-based incidence of type 2 diabetes and its associated risk factors: results from a six-year cohort study in Iran
  publication-title: BMC Public Health
  doi: 10.1186/1471-2458-9-186
– ident: 10.1016/j.diabres.2014.07.003_bib0045
– volume: 34
  start-page: 113
  year: 2005
  ident: 10.1016/j.diabres.2014.07.003_bib0060
  article-title: Predicting breast cancer survivability: a comparison of three data mining methods
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2004.07.002
– volume: 103
  start-page: 137
  issue: 2
  year: 2014
  ident: 10.1016/j.diabres.2014.07.003_bib0005
  article-title: Global estimates of diabetes prevalence in adults for 2013 and projections for 2035 for the IDF Diabetes Atlas
  publication-title: Diabetes Res Clin Pract
  doi: 10.1016/j.diabres.2013.11.002
– volume: 368
  start-page: 29
  year: 2006
  ident: 10.1016/j.diabres.2014.07.003_bib0020
  article-title: Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)68967-8
– year: 1977
  ident: 10.1016/j.diabres.2014.07.003_bib0155
– ident: 10.1016/j.diabres.2014.07.003_bib0135
  doi: 10.2337/diacare.20.7.1183
– volume: 20
  start-page: 381
  year: 2006
  ident: 10.1016/j.diabres.2014.07.003_bib0195
  article-title: Evaluation of classifiers for an uneven class distribution problem
  publication-title: Appl Artif Intell
  doi: 10.1080/08839510500313653
– volume: 375
  start-page: 2215
  year: 2010
  ident: 10.1016/j.diabres.2014.07.003_bib0015
  article-title: Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)60484-9
– year: 2007
  ident: 10.1016/j.diabres.2014.07.003_bib0220
– volume: 46
  start-page: 201
  year: 2009
  ident: 10.1016/j.diabres.2014.07.003_bib0180
  article-title: Prediction of periventricular leukomalacia. Part I: selection of hemodynamic features using logistic regression and decision tree algorithms
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2008.12.005
– volume: 26
  start-page: 3160
  year: 2003
  ident: 10.1016/j.diabres.2014.07.003_bib0200
  article-title: Expert committee on the diagnosis and classification of diabetes mellitus. Follow-up report on the diagnosis of diabetes mellitus
  publication-title: Diabetes Care
  doi: 10.2337/diacare.26.11.3160
– volume: 34
  start-page: 541
  year: 2010
  ident: 10.1016/j.diabres.2014.07.003_bib0075
  article-title: Can neural network able to estimate the prognosis of epilepsy patients according to risk factors?
  publication-title: J Med Syst
  doi: 10.1007/s10916-009-9267-8
– volume: 26
  start-page: 37
  year: 2002
  ident: 10.1016/j.diabres.2014.07.003_bib0085
  article-title: Data mining a diabetic data warehouse
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(02)00051-9
– volume: 29
  start-page: 93
  year: 2013
  ident: 10.1016/j.diabres.2014.07.003_bib0080
  article-title: Comparison of three data mining models for predicting diabetes or prediabetes by risk factors
  publication-title: Kaohsiung J Med Sci
  doi: 10.1016/j.kjms.2012.08.016
– volume: 36
  start-page: 35
  year: 1996
  ident: 10.1016/j.diabres.2014.07.003_bib0100
  article-title: Using neural networks to predict the onset of diabetes mellitus
  publication-title: J Chem Inform Comput Sci
  doi: 10.1021/ci950063e
– volume: 23
  start-page: 277
  year: 2001
  ident: 10.1016/j.diabres.2014.07.003_bib0090
  article-title: A sequential neural network model for diabetes prediction
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(01)00086-0
– volume: 51
  start-page: 1075
  year: 2006
  ident: 10.1016/j.diabres.2014.07.003_bib0110
  article-title: Data mining for the diagnosis of type II diabetes from three-dimensional body surface anthropometrical scanning data
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2005.08.034
– volume: 354
  start-page: 622
  year: 1999
  ident: 10.1016/j.diabres.2014.07.003_bib0205
  article-title: Cardiovascular disease in older adults with glucose disorders: comparison of American Diabetes Association criteria for diabetes mellitus with WHO criteria
  publication-title: Lancet
  doi: 10.1016/S0140-6736(98)12030-5
– volume: 16
  start-page: 3
  year: 1999
  ident: 10.1016/j.diabres.2014.07.003_bib0190
  article-title: Selected techniques for data mining in medicine
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(98)00062-1
– volume: 10
  start-page: 5
  year: 2009
  ident: 10.1016/j.diabres.2014.07.003_bib0130
  article-title: Prevention of non communicable disease in a population in nutrition transition: Tehran lipid and glucose study phase II
  publication-title: Trials
  doi: 10.1186/1745-6215-10-5
– year: 1984
  ident: 10.1016/j.diabres.2014.07.003_bib0185
– volume: 36
  start-page: 2431
  year: 2012
  ident: 10.1016/j.diabres.2014.07.003_bib0125
  article-title: Data mining in healthcare and biomedicine: a survey of the literature
  publication-title: J Med Syst
  doi: 10.1007/s10916-011-9710-5
– year: 2001
  ident: 10.1016/j.diabres.2014.07.003_bib0115
– volume: 38
  start-page: 5507
  year: 2011
  ident: 10.1016/j.diabres.2014.07.003_bib0070
  article-title: Using data mining techniques for multi-diseases prediction modeling of hypertension and hyperlipidemia by common risk factors
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.10.086
– volume: 26
  start-page: 455
  year: 2004
  ident: 10.1016/j.diabres.2014.07.003_bib0095
  article-title: Artificial intelligence technology as a tool for initial GDM screening
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2003.10.005
– volume: 28
  start-page: 201
  year: 2005
  ident: 10.1016/j.diabres.2014.07.003_bib0120
  article-title: Tuberculosis transmission in nontraditional settings: a decision-tree approach
  publication-title: Am J Prev Med
  doi: 10.1016/j.amepre.2004.10.011
– volume: 26
  start-page: 84
  year: 2012
  ident: 10.1016/j.diabres.2014.07.003_bib0210
  article-title: Family history of diabetes modifies the effect of blood pressure for incident diabetes in Middle Eastern women: Tehran Lipid and Glucose Study
  publication-title: J Hum Hypertens
  doi: 10.1038/jhh.2011.4
– volume: 24
  start-page: 451
  year: 2007
  ident: 10.1016/j.diabres.2014.07.003_bib0025
  article-title: International Diabetes Federation: a consensus on type 2 diabetes prevention
  publication-title: Diabet Med
  doi: 10.1111/j.1464-5491.2007.02157.x
– volume: 343
  start-page: d7163
  year: 2011
  ident: 10.1016/j.diabres.2014.07.003_bib0030
  article-title: Risk models and scores for type 2 diabetes: systematic review
  publication-title: BMJ
  doi: 10.1136/bmj.d7163
– volume: 26
  start-page: 445
  issue: 5
  year: 2002
  ident: 10.1016/j.diabres.2014.07.003_bib0215
  article-title: Decision trees: an overview and their use in medicine
  publication-title: J Med Syst
  doi: 10.1023/A:1016409317640
– volume: 100
  start-page: 10574
  year: 2003
  ident: 10.1016/j.diabres.2014.07.003_bib0010
  article-title: Effectiveness of diabetes mellitus screening recommendations
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1733839100
– volume: 314
  start-page: 533
  year: 1997
  ident: 10.1016/j.diabres.2014.07.003_bib0050
  article-title: Screening could seriously damage your health
  publication-title: BMJ
  doi: 10.1136/bmj.314.7080.533
– volume: 38
  start-page: 5384
  year: 2011
  ident: 10.1016/j.diabres.2014.07.003_bib0065
  article-title: Exploring the risk factors of preterm birth using data mining
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.10.017
– volume: 5
  start-page: 1549
  year: 2011
  ident: 10.1016/j.diabres.2014.07.003_bib0175
  article-title: Data-mining technologies for diabetes: a systematic review
  publication-title: J Diabetes Sci Technol
  doi: 10.1177/193229681100500631
– volume: 8
  start-page: 176
  year: 2008
  ident: 10.1016/j.diabres.2014.07.003_bib0150
  article-title: High prevalence of undiagnosed diabetes and abnormal glucose tolerance in the Iranian urban population: Tehran Lipid and Glucose Study
  publication-title: BMC Public Health
  doi: 10.1186/1471-2458-8-176
– volume: 345
  start-page: e5900
  year: 2012
  ident: 10.1016/j.diabres.2014.07.003_bib0035
  article-title: Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study
  publication-title: BMJ
  doi: 10.1136/bmj.e5900
– year: 2008
  ident: 10.1016/j.diabres.2014.07.003_bib0040
– volume: 77
  start-page: 81
  year: 2008
  ident: 10.1016/j.diabres.2014.07.003_bib0055
  article-title: Predictive data mining in clinical medicine: current issues and guidelines
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2006.11.006
– ident: 10.1016/j.diabres.2014.07.003_bib0160
– year: 2007
  ident: 10.1016/j.diabres.2014.07.003_bib0165
– volume: 10
  start-page: 16
  year: 2010
  ident: 10.1016/j.diabres.2014.07.003_bib0105
  article-title: Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/1472-6947-10-16
SSID ssj0006345
Score 2.345397
Snippet The aim of this study was to create a prediction model using data mining approach to identify low risk individuals for incidence of type 2 diabetes, using the...
Abstract Aims The aim of this study was to create a prediction model using data mining approach to identify low risk individuals for incidence of type 2...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 391
SubjectTerms Adult
Aged
Arterial Pressure
Blood Glucose - analysis
Body Mass Index
Body Weights and Measures
Computational Biology
Data Mining
Decision Support Techniques
Decision tree
Decision Trees
Diabetes Mellitus, Type 2 - diagnosis
Diabetes Mellitus, Type 2 - epidemiology
Educational Status
Employment
Endocrinology & Metabolism
Female
Humans
Incidence
Iran - epidemiology
Longitudinal Studies
Male
Marital Status
Middle Aged
Prediction model
Risk Factors
Sensitivity and Specificity
Smoking
Triglycerides - blood
Type 2 diabetes
Title Applying decision tree for identification of a low risk population for type 2 diabetes. Tehran Lipid and Glucose Study
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0168822714002976
https://www.clinicalkey.es/playcontent/1-s2.0-S0168822714002976
https://dx.doi.org/10.1016/j.diabres.2014.07.003
https://www.ncbi.nlm.nih.gov/pubmed/25085758
https://www.proquest.com/docview/1563991796
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5Bkaa9TBuwrfuBDmmvaRPHTtNHhMY6ELwAEm_WJXa0IpRWaxniZX_77hInaGIT097aKldHvvPdZ_u7O4BP2pnYu4SihA0i0oWPI0bVeeTzcqp9rpzWkuB8epbNLvXxlbnagMMuF0ZolcH3tz698dbhl3GYzfFyPh-fM1hheKik4px0YMo2YUul08wMYOvg68nsrHfIWapbJiO_gwg8JPKMr0dyxMkbWyF56aaMZ9c-63GI-hsEbULR0Ut4ETAkHrSv-Qo2fL0Nz07DLfkO_BBoKelL6EIHHZS7Z2R8inMX6EGNRnBRIeHN4g6FYo7LvptX86wcz6LC7nh2hBf-G4c2lH7XDql2-KUlvKOwEe934fLo88XhLAr9FaLSaL2OlC6VbOeULzTFRcUfjPE0JRcT8dKMjZoQZanjLSLxxsdVWVwpmnLgo5T0JH0Ng3pR-7eAKWtaubLMFZGUfyFTFLlzScUQoygyNQTdTaktQ_Fx6YFxYzuW2bUNmrCiCRvLtXg6hFEvtmyrbzwlkHX6sl1qKTtDy_HhKcHJnwT9KizplU3sStnYPjK7IeS95G-W-y-D7ncmZXlVy1UN1X5xy4MZQY7sLPnv37S21k8Ag1Zpq5q_-_-B38Nz-dZy5T7AYP391n9kcLUu9mBz9DPZC0voF5dFIu4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6FNh2GfZe1j04YFcnjiw5zrEo2qZrk8tSoDeBtmQ0ReEES7ph_36kLXsY2qHDboZtWoZIkR8lPgA-a2di70YUjVggIp37OGJUnUU-KybaZ8ppLQnOs3k6PddfLszFDhy0uTASVhl0f6PTa20d7gzDbA7Xy-XwK4MVhodKKs5JB6b0Aexqw95eD3b3T06n804hp4luIhn5H4TgdyLP8GogW5zs2EqQl67LeLbts26bqL9B0NoUHT2FJwFD4n7zm89gx1fP4eEsnJK_gO8CLSV9CV3ooINy9oyMT3HpQnhQzRFclUh4vfqBEmKO666bV_2ubM-iwnZ7doALf8mmDaXftUOqHB43Ae8o0Yg_X8L50eHiYBqF_gpRYbTeRkoXStw55XNNcV7yhTGeJuRiIl6asVFjojRx7CISOz6uTONS0YQNHyWkx8kr6FWryr8BTJjTyhVFpoik_AuZPM-cG5UMMfI8VX3Q7ZTaIhQflx4Y17aNMruygRNWOGFjORZP-jDoyNZN9Y37CNKWX7ZNLWVlaNk-3Ec4vovQb8KS3tiR3Sgb21ti14eso_xDcv9l0E-tSFle1XJUQ5Vf3fBgRpAjK0v-_OtG1roJYNAqbVWzt_8_8Ed4NF3MzuzZyfx0Dx7LkyZu7h30tt9u_HsGWtv8Q1hIvwCLqSTd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+decision+tree+for+identification+of+a+low+risk+population+for+type+2+diabetes.+Tehran+Lipid+and+Glucose+Study&rft.jtitle=Diabetes+research+and+clinical+practice&rft.au=Ramezankhani%2C+Azra&rft.au=Pournik%2C+Omid&rft.au=Shahrabi%2C+Jamal&rft.au=Khalili%2C+Davood&rft.date=2014-09-01&rft.issn=0168-8227&rft.volume=105&rft.issue=3&rft.spage=391&rft.epage=398&rft_id=info:doi/10.1016%2Fj.diabres.2014.07.003&rft.externalDBID=ECK1-s2.0-S0168822714002976&rft.externalDocID=1_s2_0_S0168822714002976
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01688227%2FS0168822714X00112%2Fcov150h.gif