Secondary Metabolites of the Rice Blast Fungus Pyricularia oryzae : Biosynthesis and Biological Function

Plant pathogenic fungi produce a wide variety of secondary metabolites with unique and complex structures. However, most fungal secondary metabolism genes are poorly expressed under laboratory conditions. Moreover, the relationship between pathogenicity and secondary metabolites remains unclear. To...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 21; no. 22; p. 8698
Main Author Motoyama, Takayuki
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 18.11.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Plant pathogenic fungi produce a wide variety of secondary metabolites with unique and complex structures. However, most fungal secondary metabolism genes are poorly expressed under laboratory conditions. Moreover, the relationship between pathogenicity and secondary metabolites remains unclear. To activate silent gene clusters in fungi, successful approaches such as epigenetic control, promoter exchange, and heterologous expression have been reported. , a well-characterized plant pathogenic fungus, is the causal pathogen of rice blast disease. is also rich in secondary metabolism genes. However, biosynthetic genes for only four groups of secondary metabolites have been well characterized in this fungus. Biosynthetic genes for two of the four groups of secondary metabolites have been identified by activating secondary metabolism. This review focuses on the biosynthesis and roles of the four groups of secondary metabolites produced by . These secondary metabolites include melanin, a polyketide compound required for rice infection; pyriculols, phytotoxic polyketide compounds; nectriapyrones, antibacterial polyketide compounds produced mainly by symbiotic fungi including endophytes and plant pathogens; and tenuazonic acid, a well-known mycotoxin produced by various plant pathogenic fungi and biosynthesized by a unique NRPS-PKS enzyme.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms21228698